Mathematics II – Examples II. Differential Calculus of Several Variables

II.4. Total differential and tangent plane

Notation: let us have a function z = f(x, y). Then

the (total) differential of the function f in the point $A = [x_0, y_0]$:

$$df(A) = \frac{\partial f}{\partial x}(A) \cdot (x - x_0) + \frac{\partial f}{\partial y}(A) \cdot (y - y_0)$$

Denote $dx = x - x_0$, $dy = y - y_0$. Then $df(A) = \frac{\partial f}{\partial x}(A) \cdot dx + \frac{\partial f}{\partial y}(A) \cdot dy$

Example 91: Let $f(x, y) = \frac{y}{x} - \frac{x}{y}$.

- a) Determine and sketch domains, where the function f is differentiable.
- b) Write the differential of f in the point $A = [x_0, y_0]$.

Example 92: Determine total differential and an approximate increment of the function $z = \frac{y}{x}$ in in the point A = [2, 1] for $\Delta x = 0.1$ and $\Delta y = 0.2$. Compare them.

Example 93: Using total differential compute approximate increment of the function $z = \operatorname{arctg} \frac{y}{x}$ in if x changes from $x_0 = 1$ to $x_1 = 1.2$ and y changes from $y_0 = -3$ to $y_1 = -3.1$.

Example 94: Approximate a value of the expression $\ln \left(\sqrt{9.03} - \sqrt{0.99} - 1\right)$ using total differential of an appropriate function.

- **Example 95**: Compute approximate value of the expression $0.98^{3.04}$ using total differential of an inappropriate function.
- **Example 96**: Find an equation of both tangent plane τ and normal line *n* to the graph of the function $z = 2x^2 4y^2$ in the point T = [2, 1, ?]. Compute approximate value of this function in the point [2.2, 1.3].
- **Example 97**: Find an equation of tangent plane τ to the surface $z = x^2 + xy y^2 + x + 3$ and parallel to the given plane ρ : 5x 3y z = 0.
 - Compute approximate values of a given expressions using total differential:

Example 98: $\sqrt[3]{7.95} \cdot \sqrt{8.96}$ Example 99: $\frac{\sqrt[4]{0.97}}{1.02^3 \cdot \sqrt[3]{0.99}}$

• Find an equation of both tangent plane τ and normal line n to the surface z = f(x, y) in the point T:

Example 101: $z = 4\sqrt{x^2 + y^2}$, T = [3, 4, ?] Example 102: z = xy, T = [0, 0, ?]Example 103: $z = x^2 \cdot \cos \frac{1}{y}$, $T = [1, \frac{2}{\pi}, ?]$ Example 104: $z = \frac{1}{x} \cdot \arcsin y$, $T = [\frac{1}{2}, \frac{\sqrt{2}}{2}, ?]$

• Find an equation of tangent plane τ to the surface z = f(x, y) and parallel to the plane ρ :

Example 105: $z = 2x^2 - y^2$, ρ : 8x - 6y - z - 15 = 0Example 106: $z = \ln(x^2 + 2y^2)$, ρ : 2x - z + 5 = 0Example 107: $z = x^2 - y^2 + 6xy + 2x$, ρ : 4x + 6y - z = 0

II.5. Derivatives and differentials of high order

Example 108: Find all partial derivatives of second order of the function $f(x, y) = xy^3 - y \cdot e^{x+y^2}$.

Example 109: Prove that the function $u = u(x, t) = \operatorname{arctg} (2x - t)$ satisfies the partial differential equation $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial t \partial x} = 0$ in \mathbb{E}_2 .

Example 110*: There is given the function f(x, y)

$$f(x,y) = \begin{cases} xy\frac{x^2 - 2y^2}{x^2 + y^2} & \text{for } [x,y] \neq [0,0], \\ 0 & \text{for } [x,y] = [0,0]. \end{cases}$$

Show that $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$

Example 111: Let us consider the scalar field $\phi(x, y, z) = xy^2 + z^3 - xyz + 3$. Compute grad ϕ , rot grad ϕ .

Example 112: Let us consider the vector field $\vec{f} = (U, V, W) = \left(xy, x^2 - z^2, \frac{y}{x+z}\right)$. Compute div \vec{f} , rot \vec{f} , div rot \vec{f} .

- **Example 113***: Let the scalar field $\phi(x, y, z)$ has continuous partial derivatives of second order in a domain $D \subset \mathbb{E}_3$. Prove that rot grad $\phi = \vec{0}$ in D.
- **Example 114***: Let the vector field $\vec{f} = (U, V, W)$ has continuous partial derivatives of second order in a domain $D \subset \mathbb{E}_3$. Prove that div rot $\vec{f} = 0$ in D.

• Find differentials of the given order:

Example 115*: $z = \sin(2x + y)$, $d^2 z = ?$

Example 116*: $z = x^3 - y^3 - xy + y^2$, $d^3z =?$

Example 117*: $u = e^{2x-3y}$, $d^2u(A) =?$, $d^3u(A) =?$, $d^nu(A) =?$, A = [0, 0].

Differentials can be used in the iportant **Taylor theorem**:

Let a function f(x, y) is differentiable(n + 1) times in any interior point of a rectangle M with a center in the point $A = [x_0, y_0]$. Then for any point $[x, y] \in M$ there exists a point $[\xi, \eta] \in M$, such that

$$f(x,y) = f(A) + df(A) + \frac{d^2 f(A)}{2!} + \dots + \frac{d^n f(A)}{n!} + R_{n+1},$$

where $df(A) = df(x_0, y_0) = \frac{\partial f}{\partial x}(A) \cdot (x - x_0) + \frac{\partial f}{\partial y}(A) \cdot (y - y_0),$

$$d^{2}f(A) = \frac{\partial^{2}f}{\partial x^{2}}(A) \cdot (x - x_{0})^{2} + \frac{\partial^{2}f}{\partial x \partial y}(A) \cdot (x - x_{0})(y - y_{0}) + \frac{\partial^{2}f}{\partial y^{2}}(A) \cdot (y - y_{0})^{2}$$

:

$$d^{n}f(A) = \sum_{k=0}^{n} \binom{n}{k} \frac{\partial^{n}f}{\partial x^{k} \partial y^{n-k}} (A) \cdot (x - x_{0})^{k} (y - y_{0})^{n-k},$$
$$R_{n+1} = \frac{1}{(n+1)!} d^{n+1}f(\xi, \eta).$$

- **Example 118***: Write Taylor expansion of the function $f(x, y) = x^3 3xy^2 + y^2 + 4x 5y$ in a neighborhood of the point A = [2, -1] and use the result for approximation of the value of the function f in the point [2.1, -1.1].
- **Example 119***: Write Taylor expansion of the fourth order of the function $f(x, y) = \cos(x^2 + y^2)$ in a neighborhood of the point [0, 0].

• Find partial derivatives of second order of the given function:

Example 120: $\phi(s,t) = \ln(s^3 + t)$ **Example 121:** $\phi(x,t) = \frac{\cos x^2}{t}$ **Example 122:** $f(x,y) = e^{ax+by}$

Example 123: Verify that the function $u(x,t) = \sin(x-ct)$ and the function $u(x,t) = \sin(\omega ct) \cdot \sin(\omega t)$ satisfy the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.

Example 124: Verify that the function $u(x, y) = e^x \cdot \sin y$ satisfies the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0.$

• Expand the function f(x, y) using Taylor's theorem in a neighborhood of a point A:

Example 125*: $f(x, y) = x^3 + 5x^2 - 6xy + 2y^2$, A = [1, -2]**Example 126***: $f(x, y) = x^2 + 3xy - y^3$, A = [2, -1]

II.6. Gradient. Directional derivative

• Determine the angle between two gradients of given functions in a point A:

Example 127: $f(x, y, z) = x^y + yz$, $g(x, y, z) = \sin(xz) + x + y - \frac{z}{y} - 1$, A = [1, 1, 0]**Example 128**: $f(x, y) = \operatorname{arctg} \frac{x}{-} g(x, y) = y\sqrt{x}, A = [1, 1]$

Example 129: Find a set in $D(f) \equiv \mathbb{E}_3$, in which the function $f(x, y, z) = x^2 + y^2 + z^2 - 2xyz$ has gradient, which equals to zero-vector $\vec{0}$.

Example 130: Find a set in $D(f) \equiv \mathbb{E}_2$, in which the function $f(x, y) = (x^2 + y^2)^{3/2}$ has a gradient of size 9.

• Compute directional derivative of function f in direction \vec{s} in a point A:

Example 131: $f(x,y) = 2x^4 + yz + y^3$, $\vec{s} = (3, -4)$, A = [1, 2]

- **Example 132**: $f(x, y, z) = x^2 + 2y^2 z^2$, A = [-3, 2, 4], direction \vec{s} is given by the vector $\overline{A, B}$, where B = [-2, 4, 2]
- **Example 133**: Compute directional derivative of the function $z = x^2 + \ln(x + y^2)$ in the point $A = [3, 2\sqrt{3}]$ in direction given by tangent line to parabola $y^2 = x$. Consider the vector with sharp angle with vector i.
- **Example 134**: Determine a direction, in which derivative of the function $f(x, y) = x^3 y + y^3 y +$ $\frac{x}{y^2} + 2y$ in the point A = [-1, 1] in maximal. Compute this derivative.

Example 135: Let us have the function $z = \sqrt{2x + y}$, the point A = [1, 2], vector $\vec{s} = (-1, 1)$. a) in which points the function z is differentiable. Determine

- b) $\frac{\partial z}{\partial \vec{s}}(A)$, c) tangent plane to the graph of function z in the point T = [1, 2, ?].
- **Example 136**: Determine a vector \vec{s} , in which direction the speed of change of the function

values of $f(x, y, z) = x^2 + y^2 + z^2 - 2xyz$ in the point A = [1, -1, 2] is maximal. Compute this maximal speed.

- **Example 137**: Determine points, in which gradient of the function $f(x, y, z) = x^2 + y^2 + z^2 2xyz$ is orthogonal to the axis x.
- **Example 138**: Determine angle between vectors grad f(A) and grad g(A), where $f(x, y, z) = x - 3y + \sqrt{3xy} + z^3, \quad g(x, y, z) = z\sqrt{x^2 + y^2} + xyz, \quad A = [3, 4, 0].$

• Compute gradient of given function:

Example 139: $f(x, y) = \frac{1}{\sqrt{(x^2 + y^2)^3}}$ Example 141: $f(x, y) = \ln(x + \sqrt{x^2 + y^2})$ Example 143: $f(u, v, t) = t\sqrt{u^2 + v^2}$

Example 140:
$$f(x, y) = \sin(x^2 y) + \frac{x^2}{3}$$

Example 142: $f(x, y, z) = x^2yz + \ln y - 15$

- Compute gradient of function in a given point A:
- **Example 144**: $f(x, y) = \operatorname{arccotg} (x 2y), A = [4, 1]$
- **Example 145**: $f(x, y, z) = x\sqrt{yz}$, A = [-2, 1, 4]

Example 146: $f(x, y, z) = \frac{x^2}{z} + \frac{z^2}{2y} - \frac{4}{x}$, A = [1, 2, -3]

Example 147: Find points in which gradient of the function $f(x, y, z) = \ln\left(x + \frac{1}{y}\right)$ equals to the vector $\left(1, -\frac{16}{9}\right)$.

Example 148: In which points the gradient of the function $f(x, y, z) = x^2 + y^2 - 2z^2 + xy + 3y + 8z$ a) is orthogonal to axis x, b) is parallel to axis z, c) equals to zero vector.

Example 149: Find angle φ of gradients of the function $f(x, y) = \arcsin \frac{x-1}{y}, y \neq 0$, in points A = [1, 1], B = [3, 4].

• Let us have a given function f(x, y), point A and vector \vec{s} . Determine where the function is differentiable, compute $\frac{\partial f}{\partial \vec{s}}(A)$ and write equation of a tangent plane to the graph of the function f in the point T = [A, f(A)]:

Example 150: f(x, y) = |x| + y, A = [1, 0], $\vec{s} = (-1, 1)$

Example 151: $f(x, y) = x^2 + 3xy + y^2$, A = [1, 0], $\vec{s} = (1, 2)$

- **Example 152**: Determine the direction in which the directional derivative of the function $f(x,y) = \ln \frac{x+y}{x-y}$ in the point A = [3,0] is maximal. Compute value of this derivative.
- **Example 153**: Compute directional derivative of the function $f(x, y) = x^2 y^2$ in the point A = [2, 3] in the direction \vec{s} in angle $\alpha = \frac{\pi}{3}$ with vector \vec{i} (α is so called *directional angle*).
- **Example 154***: Compute directional derivative of the function $f(x, y, z) = x^2 3xy + y^2z 5z$ in the point A = [1, -2, -1] in the direction \vec{s} , which is determine by its three directional angles $\alpha = \frac{\pi}{3}, \ \beta = \frac{3\pi}{4}, \ \gamma \in (0, \frac{\pi}{2})$ (directional angles are the angles between vector \vec{s} and axes x, y, z).

Example 155: Let us consider the function $z = f(x, y) = \sqrt{18 - x^2 - 2y^2}$

- a) Write a sufficient condition for differentiability of function of *n*-variables in an open set $M \subset \mathbb{E}_n$. Determine and sketch domain D in \mathbb{E}_2 , where the function f(x, y) is differentiable. Justify this.
- b) Determine and sketch a graph of the given function $f(x, y) = \sqrt{18 x^2 2y^2}$.
- c) Compute directional derivative of the function f in the point A = [1, -2] in the direction $\vec{s} = \overrightarrow{AB}$, where B = [0, 0]. Describe a behaviour of the function f in the point A in a given direction (e.g., if the function is increasing or decreasing, how fast, etc.).
- d) Write an equation and parametrization of the normal line to the graph of the function f in the touch point T = [1, -2, ?].
- e) Write equations of contours f(x, y) = k for k = 0 and k = 3. Sketch these contours.

Example 156: Let us have the function $z = f(x, y) = -\sqrt{5y - x^2}$.

- a) Determine and sketch the domain D in \mathbb{E}_2 , in which the function f(x, y) is differentiable. Justify this.
- b) Compute partial derivatives of first order of the given function in the point A = [4, 5]. Describe a behaviour of the function f in the point A (e.g., if the function is increasing or decreasing, in which direction and how fast, etc.).
- c) Determine a direction \vec{s} of the fastest descent of the function f. Compute the directional derivative of f in this direction \vec{s} .
- d) Write a differential of the function f in the point A = [4, 5]. Using this, compute an approximate value of f in [4.3, 5.3].
- e) Sketch the graph of the function z = f(x, y).

Example 157: Let us have the function $z = f(x, y) = \ln(xy - 4)$.

- a) Determine and sketch domains in \mathbb{E}_2 , in which the function f(x, y) is differentiable. Justify this.
- b) Compute gradient of the given function in the point A = [-2, -4]. Explain what the computed vector says about a behaviour of f in A.
- c) Compute a value of directional derivative of f in A in gradient's direction.
- d) Find a direction \vec{s} in which a directional derivative is null. Justify by calculation.
- e) Write equations of contours f(x, y) = k for k = 0 and $k = \ln 4$.

Example 158: Let us have the function $z = f(x, y) = x^2 - y^2 + 6xy + 2x$, the point A = [-1, 2] and the direction $\vec{s} = (2, -2)$.

- a) Compute $\frac{\partial f}{\partial \vec{s}}(A)$. Is the vector \vec{s} the direction of maximum growth of f in A?
- b) Determine a set of points in which $\operatorname{grad} f(x, y) = \vec{0}$.
- c) Find a touch point T and tangent plane τ to a graph of the function f, which is parallel to the plane ρ : 4x + 6y z + 3 = 0.

Example 159: Let us have the function $z = f(x, y) = y^2 \sin(x^2 - y^2)$.

- a) Determine where is the function f differentiable and compute f_x , f_y .
- b) Write an equation of a tangent plane to the graph of the function f in touch point T = [1, 1, ?].
- c) Using total differential compute approximation of a value f(0.9, 1.1).