Mathematics II - Examples
 V. Surface integral

V.1. Parametrization of surfaces

- Suggest parametrization of a surface Q, which has orientation determined by normal vector \vec{n}_{Q}. Find if the surface Q is oriented in accordance with the suggested parametrization:

Example 591: Q is a parallelogram with vertices $A=[1,1,1], B=[1,4,4], C=[0,5,6]$, $D=[0,2,3], \vec{n}_{Q} \cdot \vec{k}>0$.

Example 592: Q is a circle in the plane $x=2$ with center at the point $[2,-1,3]$ and radius 4 , $\vec{n}_{Q}=(-1,0,0)$

Example 593: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=x^{2}+y^{2}, y \geq 0, z \leq 1\right\}, \vec{n}_{Q}([0,0,0])=(0,0,-1)$
Example 594*: Consider a half of sphere $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0, a>0\right\}$, which is oriented in accordance with the normal vector $\vec{n}=\left(n_{1}, n_{2}, n_{3}\right)$, where $n_{3} \geq 0$. Decide which of the following functions $P(u, v)$ is parametrization of surface Q :
a) $P(u, v)=\left[u, v, \sqrt{a^{2}-u^{2}-v^{2}}\right]$, where $[u, v] \in B=\left\{[u, v] \in \mathbb{E}_{2} ; u^{2}+v^{2} \leq a^{2}\right\}$,
b) $P(u, v)=\left[\frac{2 a^{2} u}{a^{2}+u^{2}+v^{2}}, \frac{2 a^{2} v}{a^{2}+u^{2}+v^{2}}, \frac{2 a^{3}}{a^{2}+u^{2}+v^{2}}-a\right]$,
where $[u, v] \in B=\left\{[u, v] \in \mathbb{E}_{2} ; u^{2}+v^{2} \leq a^{2}\right\}$,
c) $P(u, v)=[a \cos u \cos v, a \sin u \cos v, a \sin v]$, where $[u, v] \in B=\langle 0,2 \pi\rangle \times\left\langle 0, \frac{\pi}{2}\right\rangle$.

Example 595: Surface $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}=4, x \geq 0, z \in\langle 1,4\rangle\right\}$, is oriented in accordance with normal vector \vec{n}_{Q}, for which $\vec{n}_{Q} \cdot \vec{i} \geq 0$ in any point.
a) Verify if $P(u, v)=(2 \cos u, 2 \sin u, v),[u, v] \in B=\left\langle-\frac{\pi}{2}, \frac{\pi}{2}\right\rangle \times\langle 1,4\rangle$ is a parametrization of surface Q and decide about orientation of this surface relative to this parametrization.
b) Justify that the parametrization $P(u, v)=\left[\sqrt{4-u^{2}}, u, v\right],[u, v] \in B=\langle-2,2\rangle \times\langle 1,4\rangle$ is not a parametrization of the surface Q.

Example 596: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}=4, x \geq 0,0 \leq z \leq 4\right\}, \vec{n}_{Q}([2,0,2])=(1,0,0)$
Example 597: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=x y, x^{2}+y^{2} \leq a^{2}, a>0\right\}, \vec{n}_{Q} \cdot \vec{k}>0$
Example 598: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; \frac{(y-1)^{2}}{4}+z^{2}=1, x \in\langle-1,3\rangle, z>0\right\}, \vec{n}_{Q}([0,0,1])=$ $(0,0,-1)$

Example 599: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; 2 x+3 y+z=6, x \geq 0, y \geq 0, z \geq 0\right\}, \vec{n}_{Q}=\left(n_{1}, n_{2}, n_{3}\right)$, $n_{1}>0$

V.2. Surface integral of a scalar function

- Decide about existence of the given surface integral and if exists compute it:

Example 600: $\iint_{Q} \frac{x y \ln |x|}{z} \mathrm{~d} p$, where $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; \quad(x-2)^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$
Example 601*: $\iint_{Q} \frac{\mathrm{~d} p}{x^{2}+y^{2}+z^{2}-1}, \quad Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}+(z-3)^{2}=a^{2}, a>0\right\}$

- Compute given integral on surface $Q \subset \mathbb{E}_{3}$:

Example 602: $\iint_{Q} x z \mathrm{~d} p$, where Q is a triangle $\triangle A B C$ with $A=[1,0,0], B=[0,1,0]$, $C=[0,0,1]$.

Example 603: $\iint_{Q} \sqrt{x^{2}+y^{2}+1} \mathrm{~d} p, \quad Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; 2 z+x^{2}+y^{2}=4, z \geq 0\right\}$
Example 604: $\iint_{Q} x y \mathrm{~d} p, \quad Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}=4,0 \leq z \leq 1\right\}$
Example 605*: $\iint_{Q} x y z \mathrm{~d} p, Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; y^{2}+9 z^{2}=9,1 \leq x \leq 3, y \geq 0, z \geq 0\right\}$
Example 606*: $\iint_{Q}(x y+y z+x z) \mathrm{d} p, \quad Q: y=\sqrt{x^{2}+z^{2}}$, inside the surface $x^{2}+z^{2}=2 x$.

Example 607: $\iint_{Q}(x+y+z) \mathrm{d} p, \quad Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0, a>0\right\}$
Example 608: $\iint_{Q}\left(x^{2}+y^{2}\right) \mathrm{d} p, \quad Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=\sqrt{x^{2}+y^{2}}, 0 \leq z \geq 1\right\}$
Example 609: $\iint_{Q} x \mathrm{~d} p, \quad Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=\sqrt{a^{2}-x^{2}-y^{2}}\right\}$
Example 610: $\iint_{Q} z \mathrm{~d} p, \quad Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; 2 z=x^{2}+y^{2}, 0 \leq z \geq 1\right\}$

V.3. Application of surface integral of a scalar function

- Compute area of a surface $Q \subset \mathbb{E}_{3}$ using a surface integral.

Example 611: Q is a part of the plane $12 x+3 y+4 z=12$ in the first octant.
Example 612: Q is a part of the sphere $x^{2}+y^{2}+z^{2}=16$ inside the cylindrical surface $x^{2}+y^{2}=9$.
Example 613: Q is a part of the surface $z=2 x y$ in the first octant and inside the cylindrical surface $x^{2}+y^{2}=a^{2}$.

Example 614: Q is a part of the conical surface $z=\sqrt{x^{2}+y^{2}}$ inside the cylindrical surface $x^{2}+y^{2}=2 x$.

Example 615: Compute mass of the surface $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}+z^{2}=9, x \leq 0\right\}$, if the density is $\rho(x, y, z)=\frac{1}{z^{2}+9}$.

Example 616: Compute moment of inertia relative to z-axis of the surface $Q=\{[x, y, z] \in$ $\left.\mathbb{E}_{3} ; z=\sqrt{x^{2}+y^{2}}, O \leq x \leq 2\right\}$ with constant density $\rho(x, y, z)=k$.

Example 617: Find center of mass of a part of the paraboloid $x^{2}+y^{2}=2 z$, bounded by the plane $z=1$, if the density is $\rho(x, y, z)=1$.

- Consider a surface $Q \subset \mathbb{E}_{3}$.
a) Sketch the given surface along with its projection into $x y$-plane.
b) Suggest an appropriate parametrization of surface Q and compute length of a normal vector to the surface Q under this parametrization.
c) Compute area of the given surface.

Example 618: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x+2 y+z=6,1 \leq x^{2}+y^{2} \leq 4\right\}$
Example 619: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=y^{2}-x^{2}, 1 \leq x^{2}+y^{2} \leq 4\right\}$
Example 620: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=4-\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 2\right\}$
Example 621: Q is a part of sphere $x^{2}+y^{2}+z^{2}=12$ inside the paraboloid $x^{2}+y^{2}=4 z$.

- Compute area of a surface $Q \subset \mathbb{E}_{3}$.

Example 622: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=x^{2}+y^{2}, x^{2}+y^{2} \leq 1\right\}$

Example 623: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; 3 x+4 y+z=1, x \geq 0, y \geq 0, z \geq 0\right\}$
Example 624: Q is a part of conical surface $z=4 \sqrt{x^{2}+y^{2}}$ bounded by the plains $x=0$, $y=0,2 x+3 y=6$.

Example 625: Q is a part of plane $2 x+y-z=0$ inside the elliptical cylindrical surface $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.

Example 626: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x=u+v, y=u-v, z=4 v,[u, v] \in\langle 0,1\rangle \times\langle 0,1\rangle\right\}$

- Consider a surface Q and areal mass density $\rho(x, y, z)$.
a) Sketch the given surface along with its projection into plane $x=0$.
b) Suggest an appropriate parametrization of surface Q and compute length of a normal vector to the surface Q under this parametrization.
c) Compute mass of the given surface.

Example 627: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=4-x^{2}-y^{2}, z \geq 0\right\}, \quad \rho(x, y, z)=\sqrt{1+4\left(x^{2}+y^{2}\right)}$
Example 628: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}=4, x \geq 0, y \geq 0, z \in\langle 0,3\rangle\right\}, \quad \rho(x, y, z)=x y z$
Example 629: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z^{2}=x^{2}+y^{2}, x \geq 0, z \in\langle 0,1\rangle\right\}, \quad \rho(x, y, z)=\sqrt{x^{2}+y^{2}}$

- Consider a surface Q and a scalar function f.
a) Sketch the given surface along with its projection into plane $x=0$.
b) Compute $\iint_{Q} f \mathrm{~d} p$.
c) Write a possible physical interpretation of the integral in b).

Example 630: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}=4, x \geq 0, z \in\langle 0,3\rangle\right\}, \quad f(x, y, z)=x y^{2}$
Example 631: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=\frac{1}{2}\left(x^{2}+y^{2}\right), z \in\langle 0,1\rangle\right\}, \quad f(x, y, z)=k z, k>0$
Example 632: $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=\sqrt{9-x^{2}-y^{2}}\right\}, \quad f(x, y, z)=x^{2}+y^{2}$
Example 633: There is given the surface $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z=x y, x^{2}+y^{2} \leq 3\right\}$.
a) In standalone pictures sketch the three curves, which are given as intersections of graph of the function $z=x y$ with planes $z=1, x-y=0$ and $x+y=0$.
b) Suggest an appropriate parametrization of Q. Write a normal vector to the surface Q and compute its length under this parametrization.
c) Compute area of Q.

Example 634: Compute a mass of the surface $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0, a>0\right\}$, if the areal mass density is $\rho(x, y, z)=z$.

Example 635: Compute mass of the surface $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x+y+z=1, x \geq 0, y \geq 0\right.$, $z \geq 0\}$, if the areal mass density is $\rho(x, y, z)=\frac{1}{(1+x+y)^{2}}$.

Example 636: Compute a center of mass of part of the conic surface $z=\sqrt{x^{2}+y^{2}}$ inside the cylindrical surface $x^{2}+y^{2}=a x,(a>0)$, if the mass density is constant $\rho(x, y, z)=k$.

Example 637: Compute a center of mass of the surface $Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; x=\sqrt{y^{2}+z^{2}}\right.$, $y \geq 0,0 \leq x \leq 2\}$ if the mass density is $\rho(x, y, z)=x$.

Example 638: Compute coordinate y_{T} of center of mass of the surface $Q=\left\{[x, y, z] \in \mathbb{E}_{3}\right.$; $\left.x^{2}+z^{2}=4, x \geq 0, z \geq 0, y \in\langle 0,3\rangle\right\}$ if the mass density is $\rho(x, y, z)=x y z$.

Example 639: Compute a static moment relative to axis of rotation of the homogeneous halfsphere with radius $R, \rho(x, y, z)=k$.

Example 640: Compute a moment of inertia relative to z-axis of the homogeneous triangle with vertices $[a, 0,0],[0, a, 0],[0,0, a],(a>0, \rho(x, y, z)=k)$.

Example 641: Compute a moment of inertia relative to z-axis of the homogeneous surface $Q=$ $Q_{1} \cup Q_{2}$, where $Q_{1}=\left\{[x, y, z] \in \mathbb{E}_{3} ; x^{2}+y^{2} \leq 16, z=0\right\}, \quad Q_{2}=\left\{[x, y, z] \in \mathbb{E}_{3} ;\right.$ $\left.\left.z=4-\sqrt{x^{2}+y^{2}}, z \geq 0\right\}, \rho(x, y, z)=k\right)$.

Example 642: Compute a moment of inertia relative to z-axis of the homogeneous surface $\left.Q=\left\{[x, y, z] \in \mathbb{E}_{3} ; z^{2}=\frac{h^{2}}{a^{2}}\left(x^{2}+y^{2}\right), 0 \leq z \leq h\right\}, \rho(x, y, z)=k\right)$.

V.4. Surface integral of a vector function

- Compute given surface integral $\iint_{Q} \vec{f} \cdot \mathrm{~d} \vec{p}$ on a given surface $Q \subset \mathbb{E}_{3}$, which is oriented in accordance with a given normal vector:

Example 643:

- Compute a flow of vector field \vec{f} through the surface $Q \subset \mathbb{E}_{3}$, which is oriented in accordance with a given normal vector:

Example 650:

- Consider a vector function \vec{f} and a surface Q.
a) Sketch the given surface. Suggest its parametrization and write an orthogonal vector to surface Q.
b) Compute a flow of a vector field given by \vec{f} through the surface Q oriented with the given normal vector \vec{n}.

Example 656:

- Compute a flow of vector field \vec{f} through the surface $Q \subset \mathbb{E}_{3}$, which is oriented in accordance with a given normal vector:

