Mathematics II – Examples V. Surface integral

V.1. Parametrization of surfaces

- Suggest parametrization of a surface Q, which has orientation determined by normal vector \vec{n}_Q . Find if the surface Q is oriented in accordance with the suggested parametrization:
- **Example 591**: Q is a parallelogram with vertices A = [1, 1, 1], B = [1, 4, 4], C = [0, 5, 6], $D = [0, 2, 3], \ \vec{n}_Q \cdot \vec{k} > 0.$
- **Example 592**: Q is a circle in the plane x = 2 with center at the point [2, -1, 3] and radius 4, $\vec{n}_Q = (-1, 0, 0)$

Example 593: $Q = \{ [x, y, z] \in \mathbb{E}_3; z = x^2 + y^2, y \ge 0, z \le 1 \}, \vec{n}_O([0, 0, 0]) = (0, 0, -1) \}$

Example 594*: Consider a half of sphere $Q = \{ [x, y, z] \in \mathbb{E}_3; x^2 + y^2 + z^2 = a^2, z \ge 0, a > 0 \},\$ which is oriented in accordance with the normal vector $\vec{n} = (n_1, n_2, n_3)$, where $n_3 \ge 0$. Decide which of the following functions P(u, v) is parametrization of surface Q:

- a) $P(u,v) = \begin{bmatrix} u, v, \sqrt{a^2 u^2 v^2} \end{bmatrix}$, where $[u,v] \in B = \{[u,v] \in \mathbb{E}_2; u^2 + v^2 \le a^2\}$, b) $P(u,v) = \begin{bmatrix} \frac{2a^2u}{a^2 + u^2 + v^2}, \frac{2a^2v}{a^2 + u^2 + v^2}, \frac{2a^3}{a^2 + u^2 + v^2} a \end{bmatrix}$, where $[u, v] \in B = \{ [u, v] \in \mathbb{E}_2; u^2 + v^2 \le a^2 \},\$
- c) $P(u,v) = [a \cos u \cos v, a \sin u \cos v, a \sin v]$, where $[u,v] \in B = \langle 0, 2\pi \rangle \times \langle 0, \frac{\pi}{2} \rangle$.

Example 595: Surface $Q = \{ [x, y, z] \in \mathbb{E}_3; x^2 \neq y^2 = 4, x \geq 0, z \in \langle 1, 4 \rangle \}$, is oriented in

- accordance with normal vector \vec{n}_Q , for which $\vec{n}_Q \cdot \vec{i} \ge 0$ in any point. a) Verify if $P(u, v) = (2 \cos u, 2 \sin u, v), \ [u, v] \in B = \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle \times \langle 1, 4 \rangle$ is a parametrization of surface Q and decide about orientation of this surface relative to this parametrization.
 - b) Justify that the parametrization $P(u,v) = \left[\sqrt{4-u^2}, u, v\right], \ [u,v] \in B = \langle -2, 2 \rangle \times \langle 1, 4 \rangle$ is not a parametrization of the surface Q.

Example 596: $Q = \{ [x, y, z] \in \mathbb{E}_3; x^2 + y^2 = 4, x \ge 0, 0 \le z \le 4 \}, \vec{n}_Q([2, 0, 2]) = (1, 0, 0) \}$

Example 597: $Q = \{ [x, y, z] \in \mathbb{E}_3; z = xy, x^2 + y^2 \le a^2, a > 0 \}, \vec{n}_O \cdot \vec{k} > 0 \}$

Example 598: $Q = \{ [x, y, z] \in \mathbb{E}_3; \ \frac{(y-1)^2}{4} + z^2 = 1, \ x \in \langle -1, 3 \rangle, z > 0 \}, \ \vec{n}_Q([0, 0, 1]) = \langle -1, 3 \rangle, z > 0 \}$ (0, 0, -1)

Example 599: $Q = \{ [x, y, z] \in \mathbb{E}_3; \ 2x + 3y + z = 6, \ x \ge 0, \ y \ge 0, \ z \ge 0 \}, \ \vec{n}_Q = (n_1, n_2, n_3),$ $n_1 > 0$

V.2. Surface integral of a scalar function

• Decide about existence of the given surface integral and if exists compute it:

Example 600:
$$\iint_Q \frac{xy \ln |x|}{z} dp$$
, where $Q = \{ [x, y, z] \in \mathbb{E}_3; (x-2)^2 + y^2 + z^2 = 1, z \ge 0 \}$
Example 601*: $\iint_Q \frac{dp}{x^2 + y^2 + z^2 - 1}, Q = \{ [x, y, z] \in \mathbb{E}_3; x^2 + y^2 + (z-3)^2 = a^2, a > 0 \}$

• Compute given integral on surface $Q \subset \mathbb{E}_3$:

Example 602:
$$\iint_Q xz \, dp$$
, where Q is a triangle $\triangle ABC$ with $A = [1, 0, 0], B = [0, 1, 0], C = [0, 0, 1].$
Example 603: $\iint_Q \sqrt{x^2 + y^2 + 1} \, dp, Q = \{[x, y, z] \in \mathbb{E}_3; 2z + x^2 + y^2 = 4, z \ge 0\}$
Example 604: $\iint_Q xy \, dp, Q = \{[x, y, z] \in \mathbb{E}_3; x^2 + y^2 = 4, 0 \le z \le 1\}$
Example 605*: $\iint_Q xyz \, dp, Q = \{[x, y, z] \in \mathbb{E}_3; y^2 + 9z^2 = 9, 1 \le x \le 3, y \ge 0, z \ge 0\}$
Example 606*: $\iint_Q (xy + yz + xz) \, dp, Q : y = \sqrt{x^2 + z^2}, \text{ inside the surface } x^2 + z^2 = 2x.$
Example 607: $\iint_Q (x + y + z) \, dp, Q = \{[x, y, z] \in \mathbb{E}_3; x^2 + y^2 + z^2 = a^2, z \ge 0, a > 0\}$
Example 608: $\iint_Q (x^2 + y^2) \, dp, Q = \{[x, y, z] \in \mathbb{E}_3; z = \sqrt{x^2 + y^2}, 0 \le z \ge 1\}$
Example 609: $\iint_Q x \, dp, Q = \{[x, y, z] \in \mathbb{E}_3; 2z = x^2 + y^2, 0 \le z \ge 1\}$

V.3. Application of surface integral of a scalar function

• Compute area of a surface $Q \subset \mathbb{E}_3$ using a surface integral.

Example 611: Q is a part of the plane 12x + 3y + 4z = 12 in the first octant.

Example 612: Q is a part of the sphere $x^2 + y^2 + z^2 = 16$ inside the cylindrical surface $x^2 + y^2 = 9$.

Example 613: Q is a part of the surface z = 2xy in the first octant and inside the cylindrical surface $x^2 + y^2 = a^2$.

Example 614: Q is a part of the conical surface $z = \sqrt{x^2 + y^2}$ inside the cylindrical surface $x^2 + y^2 = 2x$.

Example 615: Compute mass of the surface $Q = \{[x, y, z] \in \mathbb{E}_3; x^2 + y^2 + z^2 = 9, x \le 0\}$, if the density is $\rho(x, y, z) = \frac{1}{z^2 + 9}$.

Example 616: Compute moment of inertia relative to z-axis of the surface $Q = \{[x, y, z] \in \mathbb{E}_3; z = \sqrt{x^2 + y^2}, O \le x \le 2\}$ with constant density $\rho(x, y, z) = k$.

Example 617: Find center of mass of a part of the paraboloid $x^2 + y^2 = 2z$, bounded by the plane z = 1, if the density is $\rho(x, y, z) = 1$.

• Consider a surface $Q \subset \mathbb{E}_3$.

a) Sketch the given surface along with its projection into xy-plane.

b) Suggest an appropriate parametrization of surface Q and compute length of a normal vector to the surface Q under this parametrization.

c) Compute area of the given surface.

Example 618: $Q = \{[x, y, z] \in \mathbb{E}_3; x + 2y + z = 6, 1 \le x^2 + y^2 \le 4\}$ Example 619: $Q = \{[x, y, z] \in \mathbb{E}_3; z = y^2 - x^2, 1 \le x^2 + y^2 \le 4\}$ Example 620: $Q = \{[x, y, z] \in \mathbb{E}_3; z = 4 - \sqrt{x^2 + y^2}, 0 \le z \le 2\}$

Example 621: Q is a part of sphere $x^2 + y^2 + z^2 = 12$ inside the paraboloid $x^2 + y^2 = 4z$.

• Compute area of a surface $Q \subset \mathbb{E}_3$.

Example 622: $Q = \{ [x, y, z] \in \mathbb{E}_3; z = x^2 + y^2, x^2 + y^2 \le 1 \}$

Example 623: $Q = \{ [x, y, z] \in \mathbb{E}_3; \ 3x + 4y + z = 1, \ x \ge 0, \ y \ge 0, \ z \ge 0 \}$

Example 624: Q is a part of conical surface $z = 4\sqrt{x^2 + y^2}$ bounded by the plains x = 0, y = 0, 2x + 3y = 6.

Example 625: Q is a part of plane 2x + y - z = 0 inside the elliptical cylindrical surface $\frac{x^2}{9} + \frac{y^2}{16} = 1.$

Example 626: $Q = \{ [x, y, z] \in \mathbb{E}_3; x = u + v, y = u - v, z = 4v, [u, v] \in \langle 0, 1 \rangle \times \langle 0, 1 \rangle \}$

- Consider a surface Q and areal mass density $\rho(x, y, z)$.
 - a) Sketch the given surface along with its projection into plane x = 0.

b) Suggest an appropriate parametrization of surface Q and compute length of a normal vector to the surface Q under this parametrization.

c) Compute mass of the given surface.

Example 627: $Q = \{[x, y, z] \in \mathbb{E}_3; z = 4 - x^2 - y^2, z \ge 0\}, \rho(x, y, z) = \sqrt{1 + 4(x^2 + y^2)}$ Example 628: $Q = \{[x, y, z] \in \mathbb{E}_3; x^2 + y^2 = 4, x \ge 0, y \ge 0, z \in \langle 0, 3 \rangle\}, \rho(x, y, z) = xyz$ Example 629: $Q = \{[x, y, z] \in \mathbb{E}_3; z^2 = x^2 + y^2, x \ge 0, z \in \langle 0, 1 \rangle\}, \rho(x, y, z) = \sqrt{x^2 + y^2}$

• Consider a surface Q and a scalar function f.

a) Sketch the given surface along with its projection into plane x = 0.

b) Compute $\iint_Q f \, \mathrm{d}p$.

c) Write a possible physical interpretation of the integral in b).

Example 630: $Q = \{ [x, y, z] \in \mathbb{E}_3; x^2 + y^2 = 4, x \ge 0, z \in (0, 3) \}, f(x, y, z) = xy^2 \}$

V.4. Surface integral of a vector function

• Compute given surface integral $\iint_Q \vec{f} \cdot d\vec{p}$ on a given surface $Q \subset \mathbb{E}_3$, which is oriented in accordance with a given normal vector:

Example 643:

• Compute a flow of vector field \vec{f} through the surface $Q \subset \mathbb{E}_3$, which is oriented in accordance with a given normal vector:

Example 650:

• Consider a vector function \vec{f} and a surface Q.

a) Sketch the given surface. Suggest its parametrization and write an orthogonal vector to surface Q.

b) Compute a flow of a vector field given by \vec{f} through the surface Q oriented with the given normal vector \vec{n} .

Example 656:

• Compute a flow of vector field \vec{f} through the surface $Q \subset \mathbb{E}_3$, which is oriented in accordance with a given normal vector:

Example 662: