
1. cvičeńı M3 10.9.2024

Opakováńı (ze středńı školy a z 1. semestru)

Sami si zopakujte z 1. semestru zejména:

� limity (ty jednoduché poznat na prvńı pohled)

� derivováńı (rychle a bez chyb)

� integrováńı

� vlastńı č́ısla a vlastńı vektory matic 2x2 (i komplexńı) a jejich geometrický význam ve 2D

Posloupnosti: {ak}∞k=1 ≡ {a1, a2, a3, . . . }

Př́ıklad 1.1:

(a) ak =
k

k+2
, {ak}∞k=1 = {1/3, 2/4, 3/5, . . . }

(b) ak = sin(k π
2
), {ak}∞k=1 = {1, 0, −1, 0 . . . }

(c) ak = ln(1 + 1/k)

Jaké jsou limity těchto posloupnost́ı? Které z nich jsou konvergentńı?

Poznámka: konvergence posloupnosti nezáviśı na přidáńı, odebráńı nebo změně konečného počtu člen̊u.

Č́ıselné řady:
∑

ak ≡
∞∑
k=1

ak = a1 + a2 + a3 + . . .

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an . . . n-tý částečný součet řady
∑

ak

rn =
∞∑

k=n+1

ak = an+1 + an+2 + . . . . . . zbytek po n-tém částečném součtu řady
∑

ak

řada
∑

ak je konvergentńı ⇔ existuje lim
n→∞

sn = s ∈ R; s nazýváme součtem řady

jinak je řada divergentńı (tj. když limita sn je nevlastńı nebo neexistuje)

Př́ıklad 1.2: zapǐste předchoźı posloupnosti jako řady. Které jsou konvergentńı (určete součet)?

(a)
∞∑
k=1

k
k+2

= 1
3
+ 2

4
+ 3

5
+ . . .

posloupnost {ak} je kladná a rostoućı, tedy sn =
n∑

k=1

ak > n · a1 = n
3

→ ∞

(b)
∞∑
k=1

sin(k π
2
) = 1 + 0− 1 + 0 + 1 + . . .

s1 = s2 = 1, s3 = s4 = 0, s5 = s6 = 1, . . . – limita sn neex.

(c)
∞∑
k=1

ln(1+ 1/k) = ln 2+ ln 3
2
+ ln 4

3
+ · · · = ln 2+ ln 3− ln 2+ ln 4− ln 3+ . . . , sn = ln(n+1) → ∞
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Poznámka: konvergence řady nezáviśı na hodnotách konečného počtu jej́ıch člen̊u.
(Součet samozřejmě ano.)

Nutná podmı́nka pro konvergenci řady: lim
k→∞

ak = 0.

Tato podmı́nka neńı postačuj́ıćı - viz př. 1.2 c).

Geometrická řada:
∞∑
k=0

= a0 · qk = a0 + a0 · q,+a0 · q2 . . .

sn = a0 (1 + q + q2 + · · ·+ qn) = a0
1− qn+1

1− q
(pro q ̸= 1)

pro |q| < 1 je lim sn =
a0

1− q
, pro |q| ≥ 1 neexistuje vlastńı limita – řada diverguje.

Př́ıklad: 2− 1 +
1

2
− 1

4
+ . . . =

∞∑
k=0

2 · (−1
2
)k , q = −1

2
, s =

a0
1− q

=
2

1 + 1
2

= 4
3

Řady funkćı:∑
k fk(x) ≡

∞∑
k=1

fk(x) = f1(x) + f2(x) + f3(x) + . . .

řada
∑

k fk(x) konverguje v bodě x0 ⇔ č́ıselná řada
∑

k fk(x0) je konvergentńı

obor konvergence je množina bod̊u, v nichž řada konverguje

Př́ıklad 1.3: určete obory konvergence řad

�

∑
k k · x [ sn = x ·

n∑
k=1

k, obor konv. je {0}]

�

∞∑
k=0

(lnx)k [ pro pevné x je to geom. řada, q = lnx: pro | lnx| < 1 je s = 1
1−lnx

,

pro | lnx| ≥ 1 řada diverguje, obor konv. je (e−1, e) ]

�

∞∑
k=0

(x2 − 3)k [ pro pevné x je to geom. řada, q = x2 − 3: pro |x2 − 3| < 1 je s = 1
4−x2 ,

pro |x2 − 3| ≥ 1 řada diverguje, obor konv. je (−2, −
√
2) ∪ (

√
2, 2) ]

Mocninná řada se středem x0 a koeficienty ck je
∞∑
k=0

ck (x− x0)
k

interval konvergence je I = (x0 −R, x0 +R) , R ≥ 0 nebo R = ∞
(obor konvergence může zahrnovat nav́ıc i jeden nebo oba krajńı body)

Př́ıklad 1.4: určete obory konvergence mocninných řad

�

∑
k x

k

– pro pevné x je to geom. řada (q = x): obor konv. je |x| < 1 ⇒ x ∈ (−1, 1)

�

∑
k(x+ 2)k

– geom. řada (q = x+ 2): obor konv. je |x+ 2| < 1 ⇒ x ∈ (−3, −1)
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�

∑
k 7 (x− 12)k

– geom. řada (q = x− 12): obor konv. je |x− 12| < 1 ⇒ x ∈ (−13, −11)

�

∑
k

xk

3k−1

– geom. řada (q = x
3
, a0 = 3): pro |x

3
| < 1 je s = 3

1−x/3
, obor konv. je (−3, 3)

Taylor̊uv polynom

Nechť reálná funkce f má (n+ 1)-ńı spoj. derivaci na intervalu I, x0, x ∈ I. Pak

f(x) = Tn(x) +Rn(x), kde

Tn(x) = f(x0) + f ′(x0) (x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)
n!

(x− x0)
n . . . Taylor̊uv polynom

Rn(x) =
f (n+1)(ξ)
(n+1)!

(x− x0)
n+1 pro nějaké ξ ∈ (x0, x) . . . zbytek v Lagrangeově tvaru

Př́ıklad 1.5: napǐste Taylor̊uv polynom T3(x) se středem x0 = 1 a zbytek R3(x) pro funkci f(x) = e2x

der. f (n)(x) f (n)(1)
0. e2x e2

1. 2 e2x 2 e2

2. 4 e2x 4 e2

3. 8 e2x 8 e2

4. 16 e2x

T3(x) = e2 + 2 e2 (x− 1) + 4 e2

2!
(x− 1)2 + 8 e2

3!
(x− 1)3, R3(x) =

16 e2ξ

4!
(x− 1)4

Taylorova řada

Nechť reálná funkce f je definovaná v okoĺı bodu x0 a má v něm derivace všech řád̊u.
Taylorova řada funkce f o středu x0 je

f(x0) + f ′(x0) (x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)
n!

(x− x0)
n + . . . =

∞∑
k=0

f (k)(x0)
k!

(x− x0)
k

Př́ıklad 1.6: napǐste Taylorovu řadu se středem v nule funkćı ex, sinx, cosx, ln(1 + x) .

� ex = 1 + x+ x2

2!
+ x3

3!
+ x4

4!
+ · · · =

∞∑
k=0

xk

k!
, x ∈ R

� sinx = x− x3

3!
+ x5

5!
− x7

7!
+ · · · =

∞∑
k=0

(−1)k x2k+1

(2k+1)!
, x ∈ R

� cosx = 1− x2

2!
+ x4

4!
− x6

6!
+ · · · =

∞∑
k=0

(−1)k x2k

(2k)!
, x ∈ R

� ln(1 + x) = x− x2

2
+ x3

3
− x4

4
+ · · · =

∞∑
k=0

(−1)k xk+1

k+1
, x ∈ (−1, 1⟩
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Otázky:

� Pro jaká x konverguje Taylorova řada f(x)?

� Když pro x konverguje, konverguje k f(x)?

Geometrická mocninná řada

Př́ıklad 1.7: napǐste Taylorovu řadu funkce 1
1−x

se středem x0 = 0:

k-tá derivace ( 1
1−x

)(k) v bodě x0 = 0 je k!(1− x)−(k+1)|x=0 = k!

Tayl. řada: 1 + x+ x2 + x3 + . . .

– geom. řada, konv. pouze pro |x| < 1, pak jej́ı součet je opravdu 1
1−x

Plat́ı: Mocninná řada je Taylorovou řadou svého součtu na intervalu konvergence.

– takže pro funkci 1
1−x

můžeme napsat jej́ı Taylorovu řadu bez derivováńı,
když si ji představ́ıme jako součet geometrické řady

Př́ıklad 1.8: S využit́ım vzorce pro součet geometrické řady napǐste Taylorovy řady o středu x0

následuj́ıćıch funkćı f(x) a určete, kde tyto řady konverguj́ı k f(x).

a) f(x) =
4

2− x
, x0 = 0 b) f(x) =

4

1 + x
, x0 = 1 c) f(x) =

1

8x2 − 2
, x0 = 0

řešeńı:

potřebujeme funkci f(x) převést na tvar
a0

1− q
, kde q = c (x− x0), resp. q = c (x− x0)

m

a)
8

2− x
=

8

2 (1− x
2
)
– součet geometrické řady pro a0 = 4, q = x

2

|q| < 1 ⇔ |x
2
| < 1 ⇔ |x| < 2 ⇔ x ∈ (−2, 2)

f(x) = 4 + 2x+ x2 + 1
2
x3 + 1

4
x4 + · · · =

∞∑
k=0

4 ·
(
x
2

)k
, x ∈ (−2, 2)

b)
4

1 + x
=

4

1 + (x− 1) + 1
=

4

2 + (x− 1)
=

4

2 (1 + (x−1)
2

)
=

2

1 + x−1
2

– součet geometrické řady pro a0 = 2, q = −x−1
2

|q| < 1 ⇔ |x−1
2
| < 1 ⇔ |x− 1| < 2 ⇔ x ∈ (−1, 3)

f(x) = 2− (x− 1) + (x−1)2

2
− (x−1)3

4
+ (x−1)4

8
− · · · =

∞∑
k=0

2 · (−1)k
(

(x−1)
2

)k

, x ∈ (−1, 3)

c)
1

8x2 − 2
=

−1

2− 8x2
=

−1

2 (1− 4x2)
– součet geometrické řady pro a0 = −1

2
, q = 4x2

|q| < 1 ⇔ x2 < 1
4

⇔ |x| < 1
2

⇔ x ∈ (−1
2
, 1

2
)

f(x) = −1
2
− 2x2 − 8x4 − 32x6 − · · · =

∞∑
k=0

−1
2
(4x2)k =

∞∑
k=0

−1
2
(2x)2k, x ∈ (−1

2
, 1

2
)
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