
6. cvičeńı M3 25.10.2024

Diferenciálńı rovnice 1. řádu - opakováńı

Dif. rovnice 1. řádu (v normálńım tvaru): nechť f(x, y) je spoj. funkce dvou proměnných,

y′ = f(x, y) , [x, y] ∈ G . . . oblast (otevřená souvislá množina) (1)

Řešeńı rovnice (1) v G: funkce y(x) def. na intervalu I, která má na I spojitou derivaci,
splňuje rovnici (1) a pro kterou plat́ı x ∈ I ⇒ [x, y(x)] ∈ G.

Maximálńı řešeńı v G: takové, k němuž neexistuje (vlastńı) prodloužeńı v G
(řešeńı y1 na intervalu J se nazývá prodloužeńı y na I, pokud I ⊂ J a y1(x) = y(x) na I).

Integrálńı křivka: graf řešeńı

Směrové pole: vektorové pole τ⃗ = (1, f(x, y))

Počátečńı (Cauchyho) úloha:

y′ = f(x, y) , y(x0) = y0

Věta - o existenci a jednoznačnosti řešeńı

Nechť f(x, y) je funkce dvou proměnných, pro kterou plat́ı:

� f(x, y) je spojitá v G (existence)

�
∂f
∂y
(x, y) je spojitá v G (jednoznačnost)

Pak pro každý bod [x0, y0] ∈ G existuje právě jedno maximálńı řešeńı úlohy (1), pro které
y(x0) = y0. Jinými slovy: každým bodem [x0, y0] ∈ G procháźı právě jedna integrálńı křivka.
O intervalu I max. řešeńı obecně nelze nic ř́ıct (jen že x0 ∈ I).

Poznámka k Větě o existenci a jednoznačnosti řešeńı

Druhou podmı́nku (tj. ∂f
∂y
(x, y) je spojitá v G) lze zeslabit na

• f(x, y) je Lipschitzovsky spojitá v proměnné y v G,

tj. ∃L ∈ R tak, že pro ∀x, y1, y2 ∈ G plat́ı |f(x, y1)− f(x, y2)| ≤ L |y1 − y2| .

Poznámka k existenci a jednoznačnosti řešeńı Cauchyho úlohy

Standardńı postup: nejdř́ıv zkuśıme ověřit oba předpoklady Věty, tj. spojitost f(x, y)
a ∂f

∂y
(x, y) v nějakém okoĺı U([x0, y0]) bodu [x0, y0].

Pokud ∂f
∂y
(x, y) neńı spojitá v žádném okoĺı [x0, y0], můžeme ověřit slabš́ı podmı́nku

– zda f(x, y) je v bodě [x0, y0] Lipschitzovsky spojitá v proměnné y, tj. zda plat́ı

∃L ∈ R, ∃U([x0, y0]) tak, že pro ∀x, y ∈ U([x0, y0]) je |f(x, y)− f(x, y0)| ≤ L |y − y0| .
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Metoda separace proměnných

Separovatelná rovnice – předp. g(x) a h(y) spojité na otevřených intervalech x ∈ I a y ∈ J :

y′ = g(x) · h(y)

Jestliže nav́ıc h(y) je nenulová na J , nebo h′(y) je spoj. na J , nebo h(y) je Lipschitzovsky spoj. na J ,
pak v oblasti G = I × J procháźı každým bodem právě jedna integrálńı křivka.

Postup řešeńı:

I Pokud h(y0) = 0, je y = y0 konstantńı řešeńı.

II Na intervalech, kde h(y) ̸= 0, postupujeme ve třech kroćıch:

1. Separace:

dy

dx
= g(x) · h(y)

1

h(y)
dy = g(x) dx

2. Integrace: ∫
1

h(y)
dy =

∫
g(x) dx

řešeńı v implicit. tvaru: H(y) = G(x) + c, c ∈ R

3. Inverze:
y = H−1(G(x) + c), c ∈ R

Body 2 a 3 se nemuśı podařit (např. integrál nebo inverze se nedaj́ı vyjádřit v oboru element. funkćı).

Př́ıklad 6.1: najděte maximálńı řešeńı Cauchyho úlohy

y′ = −3y, y(0) = −1

Řešeńı:
Oblast ex. a jednozn. G = R×R (ověřili jsme spojistost pravé strany a spojitost jej́ı p. der. dle y).

Konstantńı řešeńı y = 0 nevyhovuje počátečńı podmı́nce. Pro y ̸= 0:

dy

dx
= −3y∫

1

y
dy =

∫
−3 dx

ln |y| = −3x+ c

|y| = e−3x+c = e−3xec = k e−3x, k > 0

y = ±k e−3x, k > 0

Obecné řešeńı rovnice (se zahrnut́ım konst. řeš.): y = k e−3x, k ∈ R, x ∈ R

Řešeńı C.ú.: −1 = y(0) = k e0 = k ⇒ y = −e−3x, x ∈ R

2 © Certik
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Př́ıklad 6.2: najděte maximálńı řešeńı Cauchyho úloh

(a) y′ = (x2 + 1) y, y(−3) = 2

(b) y′ = 2(x+ 1)
√
y, y(0) = 4

(c) y′ = 2(x− 3)
√
y + 1, y(0) = 21

4

(d) y′ = x y2√
x2+5

, y(2) = 0, resp. y(2) = 1

(e) y′ = y2 + 1, y(π
2
) = 0

Řešeńı:

(a) f(x, y) = (x2 + 1) y a ∂f
∂y
(x, y) = (x2 + 1) jsou spoj. v G = R×R

Konstantńı řešeńı y = 0 nevyhovuje počátečńı podmı́nce. Pro y ̸= 0:

dy

dx
= (x2 + 1) y∫

1

y
dy =

∫
x2 + 1 dx

ln |y| =
x3

3
+ x+ c

|y| = e
x3

3
+x+c = e

x3

3
+xec = k e

x3

3
+x, k > 0

y = ±k e
x3

3
+x, k > 0

Obecné řešeńı rovnice (se zahrnut́ım konst. řeš.): y = k e
x3

3
+x, k ∈ R, x ∈ R

Max. řešeńı C.ú.: 2 = y(−3) = k e
(−3)3

3
−3 = k e−12 ⇒ k = 2 e12 ⇒ y = 2 e12e

x3

3
+x, x ∈ R

(b)

f(x, y) = 2(x+ 1)
√
y

∂f
∂y

= x+1√
y

}
spoj. v G = R× (0,∞)

Konstantńı řešeńı y = 0 nevyhovuje počátečńı podmı́nce (nav́ıc nelež́ı v G, takže bychom ani neměli
zaručenu jednoznačnost řešeńı). Pro y > 0:

dy

dx
= 2(x+ 1)

√
y∫

1

2
√
y
dy =

∫
x+ 1 dx

√
y =

x2

2
+ x+ c, c ∈ R

Obecné řešeńı rovnice: y =

(
x2

2
+ x+ c

)2

, c ∈ R

Řešeńı C.ú.: 4 = y(0) = c2 ⇒ c = ±2, ale řešeńı existuje jen jedno

– konstantu tedy urč́ıme z implicitńıho tvaru:
√
4 = 0 + c ⇒ c = 2
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interval max. řešeńı: muśı platit x2

2
+ x+ 2 > 0 – plat́ı pro všechna x (D = 1− 4 · 1

2
· 2 < 0)

max. řešeńı C.ú. je tedy y =
(

x2

2
+ x+ 2

)2

, x ∈ R

Graf řešeńı je vyznačen černě na obrázku 1 .

Poznámka: pro hodnotu konstanty c = −2 taky dostaneme řešeńı, ale pro jiné počátečńı podmı́nky
a ne na celém R, viz modrá křivka na obrázku 1: plnou čarou je vyznačen graf funkce

y =
(

x2

2
+ x− 2

)2

na intervalech (−∞,−1−
√
5) a (−1 +

√
5,∞), kde je řešeńım dané rovnice,

a čárkovaně graf této funkce na intervalu (−1−
√
5,−1+

√
5), kde ovšem NENÍ řešeńım dané rovnice

– to plyne jednak z implicitńıho tvaru řešeńı, jednak se lze přesvědčit dosazeńım do dané rovnice

(a mı́t přitom na paměti, že
√
x2 = |x|). Modře je vyznačeno i konstantńı řešeńı y = 0.

Figure 1: Př́ıklad 6.2 (b)

(c)
f(x, y) = 2(x− 3)

√
y + 1

∂f
∂y

= x−3√
y+1

}
spoj. v G = R× (−1,∞)

Konstantńı řešeńı y = −1 nevyhovuje počátečńı podmı́nce (nav́ıc nelež́ı v G, takže bychom
ani neměli zaručenu jednoznačnost řešeńı). Pro y > −1:

dy

dx
= 2(x− 3)

√
y + 1∫

1

2
√
y + 1

dy =

∫
x− 3 dx√

y + 1 =
(x− 3)2

2
+ c, c ∈ R

Obecné řešeńı rovnice: y =

(
(x− 3)2

2
+ c

)2

− 1, c ∈ R

Řešeńı C.ú.: konstantu urč́ıme z implicitńıho tvaru:
√

21
4
+ 1 = (−3)2

2
+ c ⇒ c =

√
25
4
− 9

2
= −2

interval max. řešeńı: muśı platit (x−3)2

2
− 2 > 0 ⇐⇒ x2 − 6x+ 5 > 0, kořeny jsou x = 1 a x = 5,
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nerovnost plat́ı v int. I1 = (−∞, 1) a I2 = (5,∞), x0 ∈ I1

max. řešeńı C.ú. je tedy y =
(

(x−3)2

2
− 2

)2

− 1, x ∈ (−∞, 1)

Pozn.: kdyby počátečńı podmı́nka byla y(6) = 21
4
, max. řeš. takové C.ú. by sice představovala

stejná funkce, ale na jiném intervalu: y =
(

(x−3)2

2
− 2

)2

− 1, x ∈ (5,∞). Na intervalu (1, 5) tato

funkce neńı řešeńım rovnice (na obrázku 2 je to vyznačeno čárkovaně).

Figure 2: Př́ıklad 6.2 (c)

(d)

f(x, y) = x y2√
x2+5

∂f
∂y

= x 2y√
x2+5

}
spoj. v G = R×R

Konstantńı řešeńı y = 0 vyhovuje prvńı C.ú. s počátečńı podmı́nkou y(2) = 0, takže představuje jej́ı
řešeńı. Řešeńı druhé C.ú. úlohy s počátečńı podmı́nkou y(2) = 1 muśıme hledat dál. Pro y ̸= 0:

dy

dx
=

x y2√
x2 + 5∫

1

y2
dy =

∫
x√

x2 + 5
dx

−1

y
=

√
x2 + 5 + c, c ∈ R

Obecné řešeńı rovnice: y =
−1√

x2 + 5 + c
, c ∈ R

Řešeńı C.ú.: konstantu urč́ıme z implicitńıho tvaru: c = − 1
y0

−
√

x2
0 + 5 = −1

1
−
√
22 + 5 = −4

interval max. řešeńı: muśı platit y ̸= 0, tj. integrálńı křivka muśı celá ležet buď v horńı, nebo v
dolńı polorovině. Jelikož y(2) = 1 > 0, muśı ležet v horńı polorovině, tj. y > 0:

−1√
x2 + 5− 4

> 0 ⇐⇒
√
x2 + 5− 4 < 0 ⇐⇒

√
x2 + 5 < 4 ⇐⇒ x2 + 5 < 16 ⇐⇒ |x| <

√
11

max. řešeńı C.ú. je tedy y = −1√
x2+5−4

, x ∈ (−
√
11,

√
11).
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6. cvičeńı M3 25.10.2024

Na obrázku 3 je graf funkce y = −1√
x2+5−4

. Ta je řešeńım dané rovnice na intervalu (−∞,−
√
11),

nebo na intervalu (−
√
11,

√
11), nebo na (

√
11,∞). Odpov́ıdaj́ıćı interval (vždycky jen jeden) je

určen počátečńı podmı́nkou.

Figure 3: Př́ıklad 6.2 (d)

(e) f(x, y) = h(y) = y2 + 1 je spoj. a nenulová v G = R×R, konstantńı řešeńı neexistuje.

dy

dx
= y2 + 1∫

1

y2 + 1
dy =

∫
1 dx

arctg y = x+ c, c ∈ R

Obecné řešeńı rovnice: y = tg (x+ c), (x+ c) ∈ (−π

2
,
π

2
), c ∈ R

Řešeńı C.ú.: konstantu urč́ıme z implicitńıho tvaru: arctg 0 = π
2
+ c ⇒ c = −π

2

max. řešeńı C.ú. je tedy y = tg (x− π
2
), x ∈ (0, π).

Zkouška – u předchoźıch př́ıklad̊u jsme ji pro stručnost vynechali, měli bychom ji však vždy provést:

� y = tg (x− π
2
) je spojitě diferencovatelná na I = (0, π),

řešeńı nelze prodloužit na větš́ı interval,

celá integrálńı křivka lež́ı v oblasti existence a jednoznačnosti: I ×R ⊂ G

� rovnice:

L = y′ = (tg (x− π
2
))′ = 1

cos2(x−π
2
)

P = y2 + 1 = tg2(x− π
2
) + 1 =

sin2(x−π
2
)

cos2(x−π
2
)
+ 1 =

sin2(x−π
2
)

cos2(x−π
2
)
+

cos2(x−π
2
)

cos2(x−π
2
)
= 1

cos2(x−π
2
)

L = P

� počátečńı podmı́nka:

π
2
∈ I, y(π

2
) = tg (π

2
− π

2
) = tg 0 = 0
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