
7. cvičeńı M3 27.11.2024

Lineárńı diferenciálńı rovnice 1. řádu

Cauchyho (počátečńı) úloha:

y′ + a(x) y = g(x) , y(x0) = y0 (1)

Věta: Nechť a(x) a g(x) jsou spojité na intervalu J a nechť x0 ∈ J .
Pak existuje právě jedno maximálńı řešeńı úlohy (1) a je definováno na celém intervalu J .

U lineárńıch rovnic známe interval max. řešeńı předem, na rozd́ıl od nelineárńıch rovnic
(viz př́ıklady z 6. cvičeńı).

Bernoulliova metoda:
y′ + a(x) y = g(x)

1. Řešeńı hledáme ve tvaru y = u · v, tedy y′ = u′ · v + u · v′. Po dosazeńı do rovnice

u′ · v + u · v′ + a(x)u · v = g(x)

u′ · v + u ( v′ + a(x) v︸ ︷︷ ︸
0

) = g(x)

2. Hledáme nějaké nenulové (ale jinak libovolné) řešeńı ṽ rovnice v′ + a(x) v = 0

– lze řešit separaćı proměnných.

3. Dopoč́ıtáme u jako obecné řešeńı rovnice u′ · ṽ = g(x), lze řešit integrováńım.

4. Dopoč́ıtáme y.

Př́ıklad 7.1: najděte řešeńı lineárńı rovnice

y′ + 3y = 8 ex

Řešeńı:

1. Řešeńı hledáme ve tvaru y = u · v, tedy y′ = u′ · v + u · v′. Po dosazeńı do rovnice

u′ · v + u · v′ + 3u · v = 8 ex

u′ · v + u ( v′ + 3 v︸ ︷︷ ︸
0

) = 8 ex

2. Rovnici v′ + 3 v = 0 jsme už vyřešili v př. 6.1: v = p e−3x, p ∈ R. Potřebujeme libovolné
nenulové řešeńı, zvoĺıme např. p = 1, takže v = e−3x.

3. Dosad́ıme zpátky do rovnice 1. a dopoč́ıtáme u:

u′ · e−3x = 8 ex

u′ = 8 e4x

u =

∫
8 e4xdx = 2 e4x + c , c ∈ R

4. y = u · v = (2 e4x + c) e−3x , c ∈ R , nebo názorněji vyjádřené

y = 2 ex + c e−3x , c ∈ R .
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Metoda variace konstant:
y′ + a(x) y = g(x)

1. Najdeme obecné řešeńı yH homogenńı rovnice y′ + a(x) y = 0 (separaćı proměnných)
– záviśı na jedné konstantě c.

2. Mı́sto konstanty c uvažujeme funkci c(x), takto pozměněné řešeńı dosad́ıme do nehomogenńı
rovnice a urč́ıme funkci c(x).

Př́ıklad 7.1, podruhé: najděte řešeńı lineárńı rovnice

y′ + 3y = 8 ex

Řešeńı:

1. Vyřeš́ıme homogenńı rovnici y′ + 3y = 0 separaćı proměnných, yH = c e−3x

2. Obecné řešeńı hledáme ve tvaru y = c(x) e−3x a dosad́ıme je do nehomogenńı rovnice:

L=y′ + 3y = c′(x) e−3x − 3 c(x) e−3x + 3 c(x) e−3x = c′(x) e−3x

c′(x) e−3x = 8 ex

c′(x) = 8 e4x

c(x) =
∫
8 e4xdx = 2 e4x + c1, c1 ∈ R

y = c(x) e−3x = (2 e4x + c1) e
−3x = 2 ex + c1 e

−3x , c1 ∈ R

Př́ıklad 7.2: najděte maximálńı řešeńı Cauchyho úloh

(a) y′ − 2
x
y = 2x3, y(1) = 3

(b) y′ + 3x2 y = 2x

ex3 (x+1)
, y(0) = 7

(c) y′ + y
x
= 1

x+3
, y(−2) = 4

Řešeńı:

(a) Podm. ex. a jednozn. lin. dif. rovnice – spojitost koeficient̊u

– plat́ı na I1 = (−∞, 0) a I2 = (0,∞), 1 ∈ I2

1) y = u · v, y′ = u′ · v + u · v′, u′ · v + u (v′ − 2
x
v) = 2 x3

2) v′ − 2
x
v = 0 ⇒ dv

dx
= 2

x
v ⇒

∫
1
v
dv =

∫
2
x
dx ⇒ ln |v| = 2 ln |x|+ c = lnx2 + c, např. v = x2

3) u′x2 = 2x3 ⇒ u′ = 2x ⇒ u =
∫
2x dx = x2 + c

4) y = u · v = x2(x2 + c) , c ∈ R, x ∈ I2

Max. řešeńı C.ú.: 3 = y(1) = 12(12+c) ⇒ 3 = 1+c ⇒ c = 2, tedy y = x2(x2+2) , x ∈ (0,∞)
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(b) Podm. ex. a jednozn. lin. dif. rovnice plat́ı na I1 = (−∞, −1) a I2 = (−1,∞), 0 ∈ I2

1) y = u · v, y′ = u′ · v + u · v′, u′ · v + u (v′ + 3x2 v) = 2x

ex3 (x+1)

2) v′ + 3x2 v = 0 ⇒ dv
dx

= −3x2 v ⇒
∫

1
v
dv =

∫
−3x2 dx ⇒ ln |v| = −x3 + c, např. v = e−x3

3) u′e−x3
= 2x

ex3 (x+1)
⇒ u′ = 2x

x+1
⇒ u =

∫
2x+2−2
x+1

dx =
∫
2− 2

x+1
dx = 2x− 2 ln(x+ 1) + c

4) y = u · v = e−x3
(2x− 2 ln(x+ 1) + c) , c ∈ R, x ∈ I2

Max. řešeńı C.ú.: 7 = y(0) = e0(0+c) ⇒ c = 7, tedy y = e−x3
(2x−2 ln(x+1)+7) , x ∈ (−1,∞)

(c) Podm. ex. a jednozn. lin. dif. rovnice plat́ı na I1 = (−∞, −3), I2 = (−3, 0) a I3 = (0,∞), −2 ∈ I2

1) y = u · v, y′ = u′ · v + u · v′, u′ · v + u (v′ + 1
x
v) = 1

x+3

2) v′+ 1
x
v = 0 ⇒ dv

dx
= − 1

x
v ⇒

∫
1
v
dv =

∫
− 1

x
dx ⇒ ln |v| = − ln |x|+ c = ln | 1

x
|+ c, např. v = 1

x

3) u′ 1
x
= 1

x+3
⇒ u′ = x

x+3
⇒ u =

∫
x+3−3
x+3

dx =
∫
1− 3

x+3
dx = x− 3 ln(x+ 3) + c

4) y = u · v = 1
x
(x− 3 ln(x+ 3) + c) , c ∈ R, x ∈ I2

Max. řešeńı C.ú.: 4 = y(−2) = 1
−2

(−2− 3 ln(−2 + 3) + c) ⇐⇒ −8 = −2 + c ⇒ c = −6,

tedy y = 1
x
(x− 3 ln(x+ 3)− 6) , x ∈ (−3, 0)

Bernoulliova rovnice

y′ + a(x) y = g(x) yp

kde a(x) a g(x) jsou spoj. na intervalu J , p ∈ R, p ̸= 0, p ̸= 1 (pro tato p by šlo o lineárńı rovnici).

Pro p > 0 existuje konstantńı řešeńı y(x) = 0.

Bernoulliova metoda – jako pro lineárńı rovnici, pouze rovnice ve třet́ım kroku je trochu obecněǰśı,
ale lze ji řešit separaćı proměnných.

Př́ıklad 7.3: najděte maximálńı řešeńı Cauchyho úlohy y′ = −y

x
− x y2 , y(2) = −1

2
.

Řešeńı: f(x, y) = − y
x
− x y2, ∂f

∂y
= − 1

x
− 2x y jsou spoj. na G1 = (−∞, 0)×R , G2 = (0,∞)×R ,

[2,−1
2
] ∈ G2 – tedy G2 je oblast ex. a jednozn. řešeńı C. úlohy.

Dále si muśıme uvědomit, že jde o Bern. rovnici, naṕı̌seme ji ve standardńım tvaru:

y′ +
y

x
= −x y2

Konstantńı řešeńı y(x) = 0 nevyhovuje počátečńı podmı́nce. Postup pro y ̸= 0:

1. Řešeńı hledáme ve tvaru y = u · v, tedy y′ = u′ · v + u · v′. Po dosazeńı do rovnice

u′ · v + u · v′ + 1

x
u · v = −x (u · v)2

u′ · v + u ( v′ +
1

x
v︸ ︷︷ ︸

0

) = −xu2v2
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2. v′ + 1
x
v = 0 ⇒ dv

dx
= − 1

x
v ⇒

∫
1
v
dv = −

∫
1
x
dx ⇒ ln |v| = − lnx+ c = ln 1

x
+ c, např. v = 1

x

3. Dosad́ıme zpátky do rovnice v bodě 1. a dopoč́ıtáme u:

u′ · 1
x

= −xu2 1

x2
/ · x

du

dx
= −u2

−
∫

1

u2
du =

∫
1 dx

1

u
= x+ c , c ∈ R

u =
1

x+ c
, c ∈ R

4. y = u · v = 1
x (x+c)

, c ∈ R .

Max. řeš. C.ú.: −1
2
= y(2) = 1

2 (2+c)
= 1

4+2c
⇐⇒ −2 = 4 + 2c ⇒ c = −3

interval max. řeš.: x ̸= 0, x ̸= 3 a poč. podm. je daná v bodě x0 = 2, tj. I = (0, 3)

y = 1
x (x−3)

, x ∈ (0, 3)

Př́ıklad 7.4: najděte maximálńı řešeńı Cauchyho úlohy

y′ − 2y

x
=

2
√
y

x2
, y(−1) = 4

Řešeńı: f(x, y), ∂f
∂y

jsou spoj. na G1 = (−∞, 0)× (0,∞) , G2 = (0,∞)× (0,∞) , [−1, 4] ∈ G1

1. Řešeńı y(x) = 0 nevyhovuje poč. podm. (a nav́ıc nelež́ı v G1), takže předp. y ̸= 0.

Dosad́ıme y = u · v, tedy y′ = u′ · v + u · v′,

u′ · v + u · v′ − 2

x
u · v =

2
√
u v

x2

u′ · v + u ( v′ − 2

x
v︸ ︷︷ ︸

0

) =
2
√
u v

x2

2. v′ − 2
x
v = 0 ⇐⇒ dv

dx
= 2

x
v,

∫
1
v
dv = 2

∫
1
x
dx, ln |v| = lnx2 + c, např. v = x2

3. Dosad́ıme zpátky do rovnice v bodě 1. a dopoč́ıtáme u:

u′ · x2 =
2
√
ux2

x2
=

2
√
u |x|
x2

=
2
√
u (−x)

x2
= −2

√
u

x
du

dx
= −2

√
u

x3∫
1

2
√
u
du =

∫
− 1

x3
dx

√
u =

1

2x2
+ c

u =

(
1

2x2
+ c

)2
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4. y = u · v = x2
(

1
2x2 + c

)2
, 1

2x2 + c > 0 – podmı́nka plyne z implicit. tvaru

Max. řeš. C.ú.: 4 = y(−1) =
(
1
2
+ c

)2 ⇐⇒ 2 = |1
2
+ c | ⇒ c = 3

2
nebo c = −5

2

v bodě x0 a jeho okoĺı muśı být 1
2x2 + c > 0, tj. 1

2·1 + c > 0 , což vylouč́ı tu druhou hodnotu:

y = x2
(

1
2x2 +

3
2

)2
, x ∈ (−∞, 0)

Zkouška - dosazeńı do p̊uvodńı rovnice (vzorové provedeńı celé zkoušky viz př́ıklad 6.2 e)):

L = y′ − 2y
x
= 2x

(
1

2x2 +
3
2

)2
+ x2 · 2

(
1

2x2 +
3
2

)
·
(
− 1

x3

)
− 2x

(
1

2x2 +
3
2

)2
= − 2

x

(
1

2x2 +
3
2

)
P =

2
√
y

x2 = 2
x2

∣∣x (
1

2x2 +
3
2

)∣∣ = 2
x2 (−x) ·

(
1

2x2 +
3
2

)
= − 2

x

(
1

2x2 +
3
2

)
L = P

Rovnice v diferenciálech

M(x, y) dx+N(x, y) dy = 0 , [x, y] ∈ G ⊂ R2 , (2)

předpokládáme M , N spojité v G.

� směrové pole rovnice (2) je τ⃗ ≡ τ⃗(x, y) = (N(x, y),−M(x, y)), definované pro ∥τ⃗∥ ≠ 0

� singulárńı body (2) S = {[x, y] ∈ G : ∥τ⃗∥ = 0}

� integrálńı křivka (2) je křivka v G̃ ≡ G− S, která v každém bodě [x, y] má tečnu τ⃗(x, y)

� maximálńı integ. křivka: taková, kterou nelze prodloužit tak, aby z̊ustala integ. křivkou v G̃

Věta 7.1 – o existenci a jednoznačnosti

Nechť M(x, y), N(x, y) jsou spojitě diferencovatelné v G ⊂ R2.

Pak každým bodem G, který neńı singulárńı, procháźı právě jedna maximálńı integrálńı křivka.

Exaktńı rovnice

Rovnice (2) se nazývá exaktńı v G ⇐⇒ existuje φ(x, y) tak, že gradφ = (M,N) v G

– potom S = {[x, y] ∈ G : gradφ(x, y) = (0, 0)}
• obecný integrál exaktńı rovnice je φ(x, y) = c – rovnice vrstevnice

Každá integ. křivka lež́ı na právě jedné vrstevnici, každá souvislá část (neprázdné) vrstevnice,
která neprocháźı žádným singulárńım bodem, je integrálńı křivka.

Věta 7.2 – kritérium postačuj́ıćı pro to, aby rovnice byla exaktńı (tj. aby ex. potenciál φ(x, y)):

Nechť plat́ı

• G ⊂ R2 je jednoduše souvislá

• M , N jsou spojitě diferencovatelné v G (maj́ı v G spojité všechny parciálńı derivace)

• ∂N
∂x

= ∂M
∂y

v G

Pak rovnice (2) je exaktńı v G.
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Př́ıklad 5.5, znovu (přepsaný na rovnici v diferenciálech):

y′ =
3x2

2y

dy

dx
=

3x2

2y

2y dy = 3x2 dx

2y dy − 3x2 dx = 0

Řešeńı:

Rovnice splňuje v R2 předpoklady Věty 7.2. Existuje tedy potenciál φ(x, y) pole (−3x2, 2y):

φ(x, y) =
∫
−3x2 dx = −x3 + c1(y)

φ(x, y) =
∫
2y dy = y2 + c2(x)

φ(x, y) = −x3 + y2 + c , c ∈ R

Vyjádřeńı integrálńıch křivek (prvńı integrál): −x3 + y2 + c = 0 , [x, y] ∈ R2.

Př́ıklad 7.5: najděte prvńı integrál (vyjádřeńı integ. křivek) rovnice(
y2 + 4x

)︸ ︷︷ ︸
M(x,y)

dx+ 2xy︸︷︷︸
N(x,y)

dy = 0

Řešeńı:

ozn. M(x, y) = y2 + 4x, N(x, y) = 2xy, M , N jsou spoj. v G = R×R

∂M

∂x
= 4,

∂M

∂y
= 2y,

∂N

∂x
= 2y,

∂N

∂y
= 2x . . . spoj. v G

G je jednoduše souvislá a ∂N
∂x

= ∂M
∂y

v G ⇒ Rovnice je exaktńı v G.

Hledáme potenciál φ(x, y) pole (M,N):

φ(x, y) =
∫
M(x, y) dx =

∫
y2 + 4x dx = y2x+ 2x2 + c1(y)

φ(x, y) =
∫
N(x, y) dy =

∫
2xy dy = xy2 + c2(x)

φ(x, y) = xy2 + 2x2 + c , c ∈ R

Vyjádřeńı integrálńıch křivek (prvńı integrál): xy2 + 2x2 + c = 0 , [x, y] ∈ G.

Př́ıklad 7.6: je dána rovnice

xy dx+

(
x2

2
+

1

y

)
dy = 0

a) Ověřte, ve kterých oblastech je rovnice je exaktńı.

b) Najděte prvńı integrál (= vyjádřeńı integrálńıch křivek) dané rovnice.

c) Zapǐste vyjádřeńı integrálńı křivky procházej́ıćı bodem [0, e].

Řešeńı:

a) ozn. M(x, y) = xy, N(x, y) = x2

2
+ 1

y
, M , N jsou spoj. v G1 = R× (−∞, 0) a v G2 = R× (0,∞)

∂M

∂x
= y,

∂M

∂y
= x,

∂N

∂x
= x,

∂N

∂y
= − 1

y2
. . . spoj. v G1 i v G2
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G1 i G2 jsou jednoduše souvislé a ∂N
∂x

= ∂M
∂y

v G1 i v G2.

Rovnice je exaktńı v oblasti G1 a v oblasti v G2.

b) hledáme potenciál φ(x, y) pole (M,N):

φ(x, y) =
∫
M(x, y) dx =

∫
xy dx = x2

2
y + c1(y)

φ(x, y) =
∫
N(x, y) dy =

∫
x2

2
+ 1

y
dy = x2

2
y + ln |y|+ c2(x)

φ(x, y) = x2

2
y + ln |y|+ c , c ∈ R

Vyjádřeńı integrálńıch křivek (prvńı integrál): x2

2
y + ln |y|+ c = 0 , v G1 i v G2.

c) bod [0, e] lež́ı v G2, dosad́ıme jej do obecného vyjádřeńı integrálńıch křivek:

02

2
e + ln |e|+ c = 0 ⇒ c = − ln |e| = −1

řešeńı: x2

2
y + ln |y| − 1 = 0 , [x, y] ∈ G2

Př́ıklad 7.7: je dána rovnice
(2y − 3x2) dx+ 2(x− y)dy = 0

a) Najděte singulárńı body.

b) Ověřte, ve kterých oblastech je rovnice je exaktńı.

c) Najděte obecné vyjádřeńı integrálńıch křivek dané rovnice.

d) Najděte rovnici integrálńı křivky procházej́ıćı bodem [1, 1].

Řešeńı:

a) 2y − 3x2 = 0 a zároveň 2(x− y) = 0, tj. 2x− 3x2 = 0 ⇒ x1 = 0, x2 =
2
3
, S = {[0, 0], [2

3
, 2

3
]}

b) ozn. M(x, y) = 2y − 3x2, N(x, y) = 2(x− y), M , N jsou spoj. v G = R×R

∂M

∂x
= −6x,

∂M

∂y
= 2,

∂N

∂x
= 2,

∂N

∂y
= −2 . . . spoj. v G

G je jednoduše souvislá a ∂N
∂x

= ∂M
∂y

v G, takže rovnice je exaktńı v G.

c) hledáme potenciál φ(x, y) pole (M,N):

φ(x, y) =
∫
M(x, y) dx =

∫
2y − 3x2 dx = 2xy − x3 + c1(y)

∂φ
∂y

= 2x+ c′1(y) = N(x, y) = 2(x− y) ⇒ c′1(y) = −2y ⇒ c1(y) = −y2 + c , c ∈ R

φ(x, y) = 2xy − x3 − y2 + c , c ∈ R

Vyjádřeńı integrálńıch křivek: 2xy − x3 − y2 + c = 0 , c ∈ R , [x, y] ∈ G.

d) 2 · 1 · 1− 13 − 12 + c = 0 ⇒ c = 0 ,

integrálńı křivka procházej́ıćı bodem [1, 1] má rovnici 2xy − x3 − y2 = 0 .

Tato rovnice určuje křivku, která procháźı singulárńım bodem [0, 0], a ten muśıme z integrálńı křivky
vyloučit: muśıme vybrat takový maximálńı úsek vrstevnice, který procháźı daným bodem [1, 1]
a neobsahuje bod [0, 0] (v tomto př́ıpadě jde o úsek lež́ıćı v 1. kvadrantu).

Přibližný tvar celé křivky źıskáme např. v Matlabu nebo v Octave př́ıkazem

ezp l o t ( ’2* x*y=xˆ3=yˆ2 ’ , [=0.5 1 .5 =0.5 1 . 5 ] )
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Př́ıklad 7.8 (zk.): je dána rovnice(
2 cosx cos y + y3

)
dx+

(
y

y + 1
− 2 sinx sin y + 3xy2

)
dy = 0

a) Jsou body [π
2
, 0] a [π

4
, 0] singulárńı body této rovnice?

b) Zapǐste postačuj́ıćı podmı́nky pro to, aby rovnice byla exaktńı.

c) Ověřte, ve kterých oblastech je rovnice je exaktńı.

d) Najděte prvńı integrál (resp. vyjádřeńı integrálńıch křivek) dané rovnice.

e) Zapǐste vyjádřeńı integrálńı křivky procházej́ıćı bodem [π
4
, 0].

Řešeńı: (
2 cosx cos y + y3

)︸ ︷︷ ︸
M(x,y)

dx+

(
y

y + 1
− 2 sinx sin y + 3xy2

)
︸ ︷︷ ︸

N(x,y)

dy = 0

a) [x, y] je singulárńı bod ⇐⇒ (M(x, y), N(x, y)) = (0, 0)

M(π
2
, 0) = 2 cos π

2
cos 0 + 03 = 0, N(π

2
, 0) = 0

1
− 2 sin π

2
sin 0 + 3π

2
02 = 0 ⇒ [π

2
, 0] je singulárńı bod

M(π
4
, 0) = 2 cos π

4
cos 0 + 03 = 2

√
2
2

̸= 0 ⇒ [π
4
, 0] neńı singulárńı bod

b) – předpoklady Věty 7.2

c) M , N jsou spoj. v G1 = R× (−∞,−1) a v G2 = R× (−1,∞)

∂M

∂x
= −2 sinx cos y,

∂M

∂y
= −2 cosx sin y + 3y2,

∂N

∂x
= −2 cosx sin y + 3y2,

∂N

∂y
=

1

(y + 1)2
− 2 sinx cos y + 6xy

. . . spoj. v G1 i v G2, které jsou obě jednoduše souvislé a ∂N
∂x

= ∂M
∂y

v G1 i v G2, takže

rovnice je exaktńı jak v G1, tak v G2.

d) prvńı integrál hledáme jako potenciál φ(x, y) pole (M,N):

φ(x, y) =
∫
M(x, y) dx =

∫
2 cosx cos y + y3 dx = 2 sin x cos y + xy3 + c1(y)

φ(x, y) =
∫
N(x, y) dy =

∫
y

y+1
− 2 sinx sin y + 3xy2 dy = y − ln |y + 1|+ 2 sinx cos y + xy3 + c2(x)

φ(x, y) = 2 sinx cos y + xy3 + y − ln |y + 1|+ c , c ∈ R

vyjádřeńı integrálńıch křivek: 2 sinx cos y + xy3 + y − ln |y + 1|+ c = 0 , v G1 i v G2.

e) bod [π
4
, 0] lež́ı v G2, dosad́ıme jej do obecného vyjádřeńı integrálńıch křivek:

2 sin π
4
cos 0 + π

4
· 03 + 0− ln |1|+ c = 0 ⇒ c = −2

√
2
2

= −
√
2

řešeńı: 2 sinx cos y + xy3 + y − ln |y + 1| −
√
2 = 0 , [x, y] ∈ G2

na př́ı̌st́ı cvičeńı Eulerova formule:

eω i = cosω + i sinω

e(α+β i) t = eα teβ t i = eα t (cos(β t) + i sin(β t) )
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