7. cviceni M3 27.11.2024

Linearni diferencialni rovnice 1. radu
Cauchyho (pocatecni) uloha:
Y 4+ax)y=g),  ylze) =10 (1)

Véta: Necht a(z) a g(z) jsou spojité na intervalu J a necht zq € J.
Pak existuje pravé jedno maximalni feseni tlohy (1) a je definovdno na celém intervalu J.

U linedrnich rovnic zname interval max. feSeni predem, na rozdil od nelinearnich rovnic
(viz piiklady z 6. cviceni).

Bernoulliova metoda:
y +a(z)y =g(z)
1. ReSeni hleddme ve tvaru y = u - v, tedy ¥/ = o’ - v 4+ u - v'. Po dosazeni do rovnice
uvtu-v+alz)u-v = g
uvtu(v + alx)v) = g(x)

——
0

2. Hleddme néjaké nenulové (ale jinak libovolné) feseni v rovnice v' + a(z)v =0

— lze Tesit separaci proménnych.
3. Dopocitdme u jako obecné feseni rovnice u' - v = g(x), lze Fesit integrovanim.

4. Dopocitame y.

Priklad 7.1: najdéte TeSeni linearni rovnice
y' + 3y =8¢"
Reseni:

1. ResSeni hleddme ve tvaru y = u - v, tedy v = v’ - v + u - v'. Po dosazeni do rovnice

veovtu-v+3u-v = 8e”
u-v+u(v + 3v) = 8é€”
0

2. Rovnici v/ 4+ 3v = 0 jsme uz vyfesili v pi. 6.1: v = pe™3*, p € R. Potfebujeme libovolné
nenulové feseni, zvolime napt. p = 1, takze v = e =37,

3. Dosadime zpatky do rovnice 1. a dopoc¢itame wu:

u/-e—Sa: — 8650
v o= 8e¥

u = /8e4xda::2e4x+c, ceER

4. y=u-v=(2e"+c)e*, ce R, nebo ndzorngji vyjadiené

y=2e"+ce 3 . ceR.
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Metoda variace konstant:
Y +a(x)y = g(x)

1. Najdeme obecné feseni yy homogenni rovnice 3’ + a(z) y = 0 (separaci proménnych)
— zavisi na jedné konstanté c.

2. Misto konstanty ¢ uvazujeme funkei ¢(z), takto pozménéné feseni dosadime do nehomogenni
rovnice a uréime funkci c(z).

Piiklad 7.1, podruhé: najdéte feseni linedrni rovnice
y + 3y = 8e”

Reseni:

1. Vyiesime homogenni rovnici ¢’ + 3y = 0 separaci proménnych, yg = ce™3®
2. Obecné fesen{ hleddme ve tvaru y = c¢(z) e™3* a dosadime je do nehomogenni rovnice:

L=y’ + 3y =d(x)e ™ —3c(x) e + 3c(x) e = (x)e

(x)e ™" =8e”

d(z) =8¢
c(x) = f8e4‘”dx =2 4+¢, ¢ €R
y=clr)e =2 +c)e ™ =2e"+c1e | g ER

CI

Priklad 7.2: najdéte maximalni feseni Cauchyho 1loh

Resent:
(a) Podm. ex. a jednozn. lin. dif. rovnice — spojitost koeficient
—plati na I} = (=00, 0) a I = (0,00), 1€ I,

DHy=u-v, vy =u-v+u-v, u’-v+u(v’—%v):2x3

N}

)
)U—% =0 = g—;’szfv = f%dv:f%dx = In|v| = 2In|z| + ¢ = Inx? + ¢, napt. v = 22
Nt =22 = =22 = u= [2zdzr =2+

Hy=u-v=a*(x>+c), c€R, x€l

Max. feSenf C.i.: 3=y(1) =1%(1°+¢) = 3=14c = c=2, tedy y=2*(a*+2), z€ (0,00)
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(b) Podm. ex. a jednozn. lin. dif. rovnice plati na I; = (—oo, —1) a I = (—1,00), 0 € I,

Dy=u-v, y=u -v+u-v, u’-v+u(v’+3xzv):ez3?§+l)
2) v +322v=0 = £ =-322v = [ldv=[-322dz = Infv|=—2%+c napi. v=c""
3)u’e*x3:e$3(27x+1) = v =2 = u=[222d0r = [2- 2 dr=22-2In(z+1)+c

Hy=u-v=e"2c-2In(zx+1)+c), ceR, z€l

Max. feseni C.i.: 7=y(0) = e°(04+¢) = ¢=7, tedy y=e*"(22—2In(z+1)+7), =€ (—1,00)

(c) Podm. ex. ajednozn. lin. dif. rovnice plati na I = (—oo, —3), Iy = (=3, 0) a I3 = (0,00), —2 € I,

Dy=u-v, y=v-vtu-v, v -v+ul+i1v)=_53

20V +iv=0= L=-1v = [ldv=[-1dz = Injv|]=—-In|z|+c=1In|i|+c napi. v =1
Nui=rg > u=5 > u=["2dr=[1-2-dr=2-3In(z+3)+c
YHYy=u-v=~1(x—3mn(z+3)+c), ceR, zcl

Max. fesenf C.i.: 4 = y(—2) = % (-2 —3In(-2+3)+¢) < —-8=-2+c¢ = c=—6,
tedy y=1(z—3In(z+3)—6), ze(-3,0)

Bernoulliova rovnice

y' +alz)y=g(x)y’
kde a(x) a g(z) jsou spoj. na intervalu J, p € R, p # 0, p # 1 (pro tato p by 8lo o linedrni rovnici).

Pro p > 0 existuje konstantni feseni y(z) = 0.

Bernoulliova metoda — jako pro linearni rovnici, pouze rovnice ve tretim kroku je trochu obecné;jsi,
ale 1ze ji Tesit separaci proménnych.

1
Ptiklad 7.3: najdéte maximalni feSeni Cauchyho tdlohy 3 = —% —zy?, y2)= —3 -

Reseni: f(z,y) = =% —xy?, g—; = —% —2xy jsou spoj. na G; = (—00,0) X R, Gy = (0,00) X R,
2, —%] € Gy — tedy Gy je oblast ex. a jednozn. feSeni C. tlohy.
Déle si musime uvédomit, ze jde o Bern. rovnici, napiSeme ji ve standardnim tvaru:
y/ 4 g — g y2
x
Konstantni feseni y(x) = 0 nevyhovuje poc¢ateéni podmince. Postup pro y # 0:

1. Reseni hleddme ve tvaru y = u - v, tedy v’ = v’ - v + u - v'. Po dosazeni do rovnice

1
uovtu-v+—u-v = —x(u-v)?
T
1
uvt+u(v + —v) = —zut?
Hi/

0
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220 +v=0= L=-1y = [ldv=—[1dz = Injo|]=—Inz+c=Inl+c napi. v=1

Tz

3. Dosadime zpatky do rovnice v bodé 1. a dopocitame w:

1 1
I 2 i
' T — /- x
du 9
& -
1
—/—Qdu = /1dx
u
1
— = x+4+c, c€R
u
1
u = , CER
r+c
4. y:u-v:z($1+c), ceR.
Max. fes. C.u.: —%:y(2)22(2—1+c):ﬁ<:>—2:4+2c =c= -3

interval max. fes.: x # 0, x # 3 a po¢. podm. je dand v bodé zo = 2, tj. I = (0, 3)
y = x($1_3) 5 X E (0, 3)

Priklad 7.4: najdéte maximélni feSeni Cauchyho tlohy

2y 2\/@
r_-J e —1 :4
y-—=—5 =1
Reseni: f(z,y), g—i jsou spoj. na Gy = (—00,0) x (0,00) , Go = (0,00) x (0,00) , [-1,4] € Gy

1. Redeni y(z) = 0 nevyhovuje poé. podm. (a navic nelezi v G), takze piedp. y # 0.

Dosadime y = u - v, tedy ¢/ = v - v+ u -0/,

2 2/uv

vvovdu-v——u-v = 5
x x
2 2/uv
uevtu(v —=v) = 5
x x
—_——

0

2.0 =20=0 < =2y [lqu=2[1lds, In|v|]=1In2®+c, napi. v =2’

3. Dosadime zpatky do rovnice v bodé 1. a dopocitame w:

oo 2Vua?  2Vule|  2va(-x) 24/

T T 2 T

4 © Certik



7. cviceni M3 27.11.2024

4. y=u-v=2a> (ﬁ + 0)2 , ﬁ + ¢ > 0 — podminka plyne z implicit. tvaru

Max. fes. C.u.: 4:y(—1):(%+c)2 — 2=|3+¢c| = c=2nechoc=-3

v bodé xg a jeho okoli musi byt ﬁ +c>0, tj. ﬁ + ¢ > 0, coz vyloué¢i tu druhou hodnotu:
y = x? (ﬁ%—%)Q , 1€ (—00,0)

Zkouska - dosazeni do ptuvodni rovnice (vzorové provedeni celé zkousky viz piiklad 6.2 e)):
Loy =2 =20 (43 42 (4 ) (3)—20 (B + D)= -2 (& +D)
P 2o (et =2 (o) (B + D=1 (E+)

L=P

Rovnice v diferencialech

M(z,y)dz + N(z,y)dy =0, [z,y] € G C R?, (2)
predpokladame M, N spojité v G.
e smérové pole rovnice (2) je 7= 7(z,y) = (N(z,y), —M(z,y)), definované pro ||7|| # 0
e singuldrni body (2) S = {[z,y] € G : ||T]| = 0}
e integralni kiivka (2) je kiivka v G = G — 9, kterd v kazdém bodé [z, y] ma teénu 7(z, y)

e maximalni integ. kiivka: takova, kterou nelze prodlouzit tak, aby zustala integ. kfivkou v G

Veéta 7.1 — o existenci a jednoznacnosti

Necht M(z,y), N(z,y) jsou spojité diferencovatelné v G C R2.

Pak kazdym bodem G, ktery neni singularni, prochazi pravé jedna maximalni integralni krivka.

Exaktni rovnice

Rovnice (2) se nazyva exaktni v G <= existuje ¢(z,y) tak, ze gradp = (M, N) v G
— potom S = {[z,y] € G : grad p(z,y) = (0,0)}
e obecny integral exaktni rovnice je ¢(z,y) =c¢ — rovnice vrstevnice

Kazda integ. kiivka lezi na pravé jedné vrstevnici, kazda souvisla ¢dst (neprédzdné) vrstevnice,
kterda neprochézi zadnym singularnim bodem, je integralni kiivka.

Véta 7.2 — kritérium postacujici pro to, aby rovnice byla exaktni (tj. aby ex. potencidl ¢(z,y)):
Necht plati
e (G C R?je jednoduse souvisla
e M, N jsou spojité diferencovatelné v G (maji v G spojité vsechny parcidlni derivace)
° %—Z = 88—]\; v G

Pak rovnice (2) je exaktni v G.

) © Certik



7. cviceni M3 27.11.2024

Piiklad 5.5, znovu (ptepsany na rovnici v diferencidlech):

, 3a?
Sy
dy_Sx2
de 2y

2y dy = 3% dx
2ydy —32°der = 0
Reseni:
Rovnice spliiuje v R? piedpoklady Véty 7.2. Existuje tedy potencidl ¢(z,y) pole (—3z2,2y):
o(r,y) = [ =322 dz = =2 + 1 (y)
p(r,y) = [2y dy = y* + co(2)
oz, y)=—2+y*+¢c, c€R
Vyjédfeni integralnich kiivek (prvni integrdl): —a® +y*> +c =0, [z,y] € R

Piiklad 7.5: najdéte prvni integrél (vyjadieni integ. kiivek) rovnice

(y2 + 4z) dr + 22y dy =0
—— ~—~~

M(z,y) N(z,y)
Resent:
ozn. M(z,y) = y* + 4w, N(x,y) =2xy, M, N jsouspoj. vG=RXR
oM oM ON ON

G je jednoduse souvisla a %\cf = %—]\; v G = Rovnice je exaktni v G.

Hledédme potencial p(z,y) pole (M, N):

o(r,y) = [ M(z,y)de = [y* + 4o de = vz + 222 + ¢1(y)

p(x,y) = [ N(z,y)dy = [2zydy = 2y° + ca(2)

o(x,y) =ay* + 22> +c, c€R

Vyjédfeni integralnich kiivek (prvni integral): zy* + 222 +c¢ =0, [z,y] € G.

Priklad 7.6: je dana rovnice
22 1
rydx + <—+—) dy =0
2y
a) Ovéite, ve kterych oblastech je rovnice je exaktni.
b) Najdéte prvni integral (= vyjadfeni integralnich kiivek) dané rovnice.

c) Zapiste vyjadreni integralni kiivky prochazejici bodem |0, ¢].

Resent:
a) ozn. M(z,y) = xy, N(z,y) = %2 + é, M, N jsou spoj. v Gi = R X (—00,0) av Go = R x (0,00)
oM oM . ON . ON 1 ot v O iy O
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(GG1 i G jsou jednoduse souvislé a %—JZ = %—A; v G11v Gs.
Rovnice je exaktni v oblasti GG; a v oblasti v Gs.

b) hleddme potencidl ¢(z,y) pole (M, N):
plw,y) = [ M(z,y)de = [zyde = Ty + i(y)
p(x,y) = [N(z,y)dy = [ 5+ 2dy = Sy +Inly| + ca()
olx,y) = “"”2—2y+1n|y| +c¢, c€R

Vyjadreni integrélnich kiivek (prvni integral): %Qy +Injyl+c=0,v Gy iv Gs.

¢) bod [0, €] lezi v G, dosadime jej do obecného vyjadieni integralnich kiivek:
%e+ln|e|—|—c:0 = c=—lInle| =-1

fesent: %y—l—ln lyl—1=0, [z,y] € G

Priiklad 7.7: je ddna rovnice
(2y — 32%)dz + 2(z — y)dy = 0
a) Najdéte singularni body.
b) Ovérte, ve kterych oblastech je rovnice je exaktni.
c¢) Najdéte obecné vyjadreni integralnich kiivek dané rovnice.

d) Najdéte rovnici integrélni kiivky prochazejici bodem [1, 1].

Resent:
a) 2y — 32? = 0 a zdroveit 2(x —y) =0, tj. 20 — 322 =0 = 2, =0, 2, =2, 5 ={[0, 0], [3, 2]}
b) ozn. M(z,y) =2y — 322, N(z,y) = 2(z —y), M, N jsouspoj. vG =R xR
oM oM ON ON
oM _ ¢ IV o 9 T 9 spoj.vG
ox “ Ay ’ Ox ’ oy SPOJ. ¥
G je jednoduse souvisla a %—JZ = %—A; v G, takze rovnice je exaktni v G.

¢) hleddme potencial ¢(z,y) pole (M, N):
o(x,y) = [ M(x,y)de = [2y —32?dz =22y — 2° + ¢1(y)
% =2 4c(y) = N(zy) =2 —y) = 4y)=-2y = aly)=—y’+c¢, ceR
p(z,y) =22y —a®—y*+c, c€R
Vyjadien{ integralnich kiivek: 22y — 2% —¢y*+c=0, c€ R, [x,y] € G.
d)2-1-1-13=1*+¢c=0 = ¢c=0,
integraln{ kfivka prochézejici bodem [1, 1] m4 rovnici 2xy — 2% —y> =0 .

Tato rovnice urcuje kiivku, ktera prochazi singuldrnim bodem [0, 0], a ten musime z integralni kiivky
vyloudit: musime vybrat takovy maximalni isek vrstevnice, ktery prochdzi danym bodem [1, 1]
a neobsahuje bod [0, 0] (v tomto pfipadé jde o tsek lezici v 1. kvadrantu).

Ptiblizny tvar celé kiivky ziskame napt. v Matlabu nebo v Octave piikazem

ezplot ("2xx*xy—=x"3—y"27,[—0.5 1.5 —0.5 1.5])
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Piiklad 7.8 (zk.): je ddna rovnice

(20083: cosy+y3) dx + (% —2sinx siny+3xy2) dy =0
Y

a) Jsou body [7,0] a [%, 0] singuldrni body této rovnice?

b) Zapiste postacujici podminky pro to, aby rovnice byla exaktni.

c) Oveéite, ve kterych oblastech je rovnice je exaktni.

d) Najdéte prvni integral (resp. vyjadieni integrélnich kiivek) dané rovnice.

e) Zapiste vyjadreni integrdlni kiivky prochézejici bodem [7, 0].

Reseni:
(ZCosx cosy + y?’) dx + (% — 2sinx siny + 3xy2) dy =10
~ ~ v y
M , (. ~ /
) N(z.y)

a) |[x,y] je singularni bod <= (M(z,y), N(z,y)) = (0,0)
M(%,0) =2cosZ cos0+0*=0, N(Z,0)=2%-2sinZsin0+3202=0 = [%,0] je singuldrn{ bod

M(Z,0) =2cos T cos0 4 0° = 2¥2 £ 0 = [Z,0] neni singularni bod

b) — predpoklady Véty 7.2

c) M, N jsouspoj. v Gy =R X (—o00,—1) av Gy = R x (—1,00)

oM ) oM . 2
—— = —2sinx cosy, —— = —2cosz siny + 3y°,
ox dy
ON ON 1
—— = —2cosx siny + 3y°, — = ——— — 2sinx cosy + 6
Oz vy dy  (y+1)? v
. spoj. v Gy i v G, které jsou obé jednoduse souvislé a %—]X = %—]‘; v G711 v (G, takze

rovnice je exaktni jak v G, tak v Gs.

d) prvni integral hleddme jako potencial ¢(z,y) pole (M, N):
o(x,y) = [ M(x,y)dz = [2cosz cosy + y* dz = 2sinz cosy + zy° + ¢1(y)
o(x,y) = [ N(z,y)dy = fﬁ — 2sinz siny + 3zy*dy =y — In|y + 1| + 2sinz cosy + zy® + co(x)
o(x,y) =2sinz cosy +zy* +y—Inly+1|+c, c€R

vyjadreni integrdlnich kiivek: 2sinz cosy +xy®> +y —In|y +1|+c=0,v Gy iv Gs.
e) bod [7,0] lezi v (5, dosadime jej do obecného vyjaddieni integréalnich kiivek:

2sinf cos0+%-0°4+0—In|l|+¢=0 = c= —2‘/75 =2

fegeni: 2sinx cosy +ay® +y—Inly+1 —v2=0, [2,9] € Gy

na pifsti cviceni KEulerova formule:

e“' = cosw +isinw

(41— TP — o0 (cos(B1) + isin(B1) )

(&
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