Mathematics II - Examples
 II. Differential Calculus of Several Variables

II.4. Total differential and tangent plane

Notation: let us have a function $z=f(x, y)$. Then
the (total) differential of the function f in the point $A=\left[x_{0}, y_{0}\right]$:

$$
\mathrm{d} f(A)=\frac{\partial f}{\partial x}(A) \cdot\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(A) \cdot\left(y-y_{0}\right)
$$

Denote $\mathrm{d} x=x-x_{0}, \mathrm{~d} y=y-y_{0}$. Then

$$
\mathrm{d} f(A)=\frac{\partial f}{\partial x}(A) \cdot \mathrm{d} x+\frac{\partial f}{\partial y}(A) \cdot \mathrm{d} y
$$

Example 91: Let $f(x, y)=\frac{y}{x}-\frac{x}{y}$.
a) Determine and sketch domains, where the function f is differentiable.
b) Write the differential of f in the point $A=\left[x_{0}, y_{0}\right]$.

