Mathematics II - Examples II. Differential Calculus of Several Variables

II.4. Total differential and tangent plane

Notation: let us have a function $z=f(x, y)$. Then
the (total) differential of the function f in the point $A=\left[x_{0}, y_{0}\right]$:

$$
\mathrm{d} f(A)=\frac{\partial f}{\partial x}(A) \cdot\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(A) \cdot\left(y-y_{0}\right)
$$

Denote $\mathrm{d} x=x-x_{0}, \mathrm{~d} y=y-y_{0}$. Then

$$
\mathrm{d} f(A)=\frac{\partial f}{\partial x}(A) \cdot \mathrm{d} x+\frac{\partial f}{\partial y}(A) \cdot \mathrm{d} y
$$

Example 91: Let $f(x, y)=\frac{y}{x}-\frac{x}{y}$.
a) Determine and sketch domains, where the function f is differentiable.
b) Write the differential of f in the point $A=\left[x_{0}, y_{0}\right]$.

Example 92: Determine total differential and an approximate increment of the function $z=\frac{y}{x}$ in in the point $A=[2,1]$ for $\triangle x=0.1$ and $\triangle y=0.2$. Compare them.

Example 93: Using total differential compute approximate increment of the function $z=\operatorname{arctg} \frac{y}{x}$ in if x changes from $x_{0}=1$ to $x_{1}=1.2$ and y changes from $y_{0}=-3$ to $y_{1}=-3.1$.

Example 94: Approximate a value of the expression $\ln (\sqrt{9.03}-\sqrt{0.99}-1)$ using total differential of an appropriate function.

Example 95: Compute approximate value of the expression $0.98^{3.04}$ using total differential of an inappropriate function.

Example 96: Find an equation of both tangent plane τ and normal line n to the graph of the function $z=2 x^{2}-4 y^{2}$ in the point $T=[2,1, ?]$. Compute approximate value of this function in the point [2.2, 1.3].

Example 97: Find an equation of tangent plane τ to the surface $z=x^{2}+x y-y^{2}+x+3$ and parallel to the given plane $\rho: 5 x-3 y-z=0$.

- Compute approximate values of a given expressions using total differential:

Example 98: $\sqrt[3]{7.95} \cdot \sqrt{8.96}$

$$
\text { Example 99: } \frac{\sqrt[4]{0.97}}{1.02^{3} \cdot \sqrt[3]{0.99}}
$$

Example 100: $\sqrt{4.04} \cdot \ln 1.02 \cdot \operatorname{arctg} 0.9$

- Find an equation of both tangent plane τ and normal line n to the surface $z=f(x, y)$ in the point T :

Example 101: $z=4 \sqrt{x^{2}+y^{2}}, \quad T=[3,4, ?] \quad$ Example 102: $z=x y, \quad T=[0,0, ?]$
Example 103: $z=x^{2} \cdot \cos \frac{1}{y}, \quad T=\left[1, \frac{2}{\pi}, ?\right] \quad$ Example 104: $z=\frac{1}{x} \cdot \arcsin y, \quad T=\left[\frac{1}{2}, \frac{\sqrt{2}}{2}, ?\right]$

- Find an equation of tangent plane τ to the surface $z=f(x, y)$ and parallel to the plane ρ :

Example 105: $z=2 x^{2}-y^{2}, \quad \rho: 8 x-6 y-z-15=0$
Example 106: $z=\ln \left(x^{2}+2 y^{2}\right), \quad \rho: 2 x-z+5=0$
Example 107: $z=x^{2}-y^{2}+6 x y+2 x, \quad \rho: 4 x+6 y-z=0$

II.5. Derivatives and differentials of high order

Example 108: Find all partial derivatives of second order of the function $f(x, y)=x y^{3}-y \cdot \mathrm{e}^{x+y^{2}}$.
Example 109: Prove that the function $u=u(x, t)=\operatorname{arctg}(2 x-t)$ satisfies the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial t \partial x}=0$ in \mathbb{E}_{2}.

Example 110*: There is given the function $f(x, y)$

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-2 y^{2}}{x^{2}+y^{2}} & \text { for }[x, y] \neq[0,0] \\ 0 & \text { for }[x, y]=[0,0]\end{cases}
$$

Show that $\frac{\partial^{2} f}{\partial x \partial y}(0,0) \neq \frac{\partial^{2} f}{\partial y \partial x}(0,0)$.
Example 111: Let us consider the scalar field $\phi(x, y, z)=x y^{2}+z^{3}-x y z+3$. Compute $\operatorname{grad} \phi, \operatorname{rot} \operatorname{grad} \phi$.

Example 112: Let us consider the vector field $\vec{f}=(U, V, W)=\left(x y, x^{2}-z^{2}, \frac{y}{x+z}\right)$. Compute $\operatorname{div} \vec{f}, \operatorname{rot} \vec{f}, \quad \operatorname{div} \operatorname{rot} \vec{f}$.

Example 113*: Let the scalar field $\phi(x, y, z)$ has continuous partial derivatives of second order in a domain $D \subset \mathbb{E}_{3}$. Prove that $\operatorname{rot} \operatorname{grad} \phi=\overrightarrow{0}$ in D.

Example 114*: Let the vector field $\vec{f}=(U, V, W)$ has continuous partial derivatives of second order in a domain $D \subset \mathbb{E}_{3}$. Prove that div $\operatorname{rot} \vec{f}=0$ in D.

- Find differentials of the given order:

Example 115*: $z=\sin (2 x+y), d^{2} z=$?
Example 116*: $z=x^{3}-y^{3}-x y+y^{2}, \quad \mathrm{~d}^{3} z=$?
Example 117*: $u=\mathrm{e}^{2 x-3 y}, \quad \mathrm{~d}^{2} u(A)=?, \quad \mathrm{~d}^{3} u(A)=?, \quad \mathrm{~d}^{n} u(A)=?, \quad A=[0,0]$.
Differentials can be used in the iportant Taylor theorem:
Let a function $f(x, y)$ is differentiable $(n+1)$ times in any interior point of a rectangle M with a center in the point $A=\left[x_{0}, y_{0}\right]$. Then for any point $[x, y] \in M$ there exists a point $[\xi, \eta] \in M$, such that

$$
f(x, y)=f(A)+d f(A)+\frac{d^{2} f(A)}{2!}+\cdots+\frac{d^{n} f(A)}{n!}+R_{n+1},
$$

where $d f(A)=d f\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}(A) \cdot\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(A) \cdot\left(y-y_{0}\right)$,

$$
\begin{aligned}
& d^{2} f(A)=\frac{\partial^{2} f}{\partial x^{2}}(A) \cdot\left(x-x_{0}\right)^{2}+\frac{\partial^{2} f}{\partial x \partial y}(A) \cdot\left(x-x_{0}\right)\left(y-y_{0}\right)+\frac{\partial^{2} f}{\partial y^{2}}(A) \cdot\left(y-y_{0}\right)^{2}, \\
& \vdots \\
& d^{n} f(A)=\sum_{k=0}^{n}\binom{n}{k} \frac{\partial^{n} f}{\partial x^{k} \partial y^{n-k}}(A) \cdot\left(x-x_{0}\right)^{k}\left(y-y_{0}\right)^{n-k}, \\
& R_{n+1}=\frac{1}{(n+1)!} d^{n+1} f(\xi, \eta) .
\end{aligned}
$$

Example 118*: Write Taylor expansion of the function $f(x, y)=x^{3}-3 x y^{2}+y^{2}+4 x-5 y$ in a neighborhood of the point $A=[2,-1]$ and use the result for approximation of the value of the function f in the point $[2.1,-1.1]$.

Example 119*: Write Taylor expansion of the fourth order of the function $f(x, y)=\cos \left(x^{2}+y^{2}\right)$ in a neighborhood of the point $[0,0]$.

- Find partial derivatives of second order of the given function:

Example 120: $\phi(s, t)=\ln \left(s^{3}+t\right)$
Example 121: $\phi(x, t)=\frac{\cos x^{2}}{t}$
Example 122: $f(x, y)=\mathrm{e}^{a x+b y}$
Example 123: Verify that the function $u(x, t)=\sin (x-c t)$ and the function
$u(x, t)=\sin (\omega c t) \cdot \sin (\omega t)$ satisfy the wave equation $\quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
Example 124: Verify that the function $u(x, y)=\mathrm{e}^{x} \cdot \sin y$ satisfies the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.

- Expand the function $f(x, y)$ using Taylor's theorem in a neighborhood of a point A :

Example 125*: $f(x, y)=x^{3}+5 x^{2}-6 x y+2 y^{2}, \quad A=[1,-2]$
Example 126*: $f(x, y)=x^{2}+3 x y-y^{3}, \quad A=[2,-1]$

II.6. Gradient. Directional derivative

- Determine the angle between two gradients of given functions in a point A :

Example 127: $f(x, y, z)=x^{y}+y z, \quad g(x, y, z)=\sin (x z)+x+y-\frac{z}{y}-1, \quad A=[1,1,0]$
Example 128: $f(x, y)=\operatorname{arctg} \frac{x}{,} g(x, y)=y \sqrt{x}, \quad A=[1,1]$
Example 129: Find a set in $D(f) \equiv \mathbb{E}_{3}$, in which the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y z$ has gradient, which equals to zero-vector $\overrightarrow{0}$.

Example 130: Find a set in $D(f) \equiv \mathbb{E}_{2}$, in which the function $f(x, y)=\left(x^{2}+y^{2}\right)^{3 / 2}$ has a gradient of size 9 .

- Compute directional derivative of function f in direction \vec{s} in a point A :

Example 131: $f(x, y)=2 x^{4}+y z+y^{3}, \quad \vec{s}=(3,-4), \quad A=[1,2]$
Example 132: $f(x, y, z)=x^{2}+2 y^{2}-z^{2}, \quad A=[-3,2,4]$, direction \vec{s} is given by the vector $\overrightarrow{A, B}$, where $B=[-2,4,2]$

Example 133: Compute directional derivative of the function $z=x^{2}+\ln \left(x+y^{2}\right)$ in the point $A=[3,2 \sqrt{3}]$ in direction given by tangent line to parabola $y^{2}=x$. Consider the vector with sharp angle with vector \vec{i}.

Example 134: Determine a direction, in which derivative of the function $f(x, y)=x^{3} y+$ $\frac{x}{y^{2}}+2 y$ in the point $A=[-1,1]$ in maximal. Compute this derivative.

Example 135: Let us have the function $z=\sqrt{2 x+y}$, the point $A=[1,2]$, vector $\vec{s}=(-1,1)$. Determine
a) in which points the function z is differentiable.
b) $\frac{\partial z}{\partial \bar{s}}(A)$,
c) tangent plane to the graph of function z in the point $T=[1,2, ?]$.

Example 136: Determine a vector \vec{s}, in which direction the speed of change of the function values of $f(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y z$ in the point $A=[1,-1,2]$ is maximal. Compute this maximal speed.

Example 137: Determine points, in which gradient of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y z$ is orthogonal to the axis x.

Example 138: Determine angle of vectors $\operatorname{grad} f(A)$ and $\operatorname{grad} g(A)$, where $f(x, y, z)=x-3 y+\sqrt{3 x y}+z^{3}, \quad g(x, y, z)=z \sqrt{x^{2}+y^{2}}+x y z, A=[3,4,0]$.

- Compute gradient of given function:

Example 139: $f(x, y)=\frac{1}{\sqrt{\left(x^{2}+y^{2}\right)^{3}}}$
Example 140: $f(x, y)=\sin \left(x^{2} y\right)+\frac{x^{2}}{3}$
Example 141: $f(x, y)=\ln \left(x+\sqrt{x^{2}+y^{2}}\right)$
Example 142: $f(x, y, z)=x^{2} y z+\ln y-15$
Example 143: $f(u, v, t)=t \sqrt{u^{2}+v^{2}}$

- Compute gradient of function in a given point A :

