Mathematics II – Examples

II. Differential Calculus of Several Variables

II.4. Total differential and tangent plane

Notation: let us have a function z = f(x, y). Then

the (total) differential of the function f in the point $A = [x_0, y_0]$:

$$df(A) = \frac{\partial f}{\partial x}(A) \cdot (x - x_0) + \frac{\partial f}{\partial y}(A) \cdot (y - y_0)$$

Denote
$$dx = x - x_0, dy = y - y_0$$
. Then
$$df(A) = \frac{\partial f}{\partial x}(A) \cdot dx + \frac{\partial f}{\partial y}(A) \cdot dy$$

Example 91: Let $f(x,y) = \frac{y}{x} - \frac{x}{y}$.

- a) Determine and sketch domains, where the function f is differentiable.
- b) Write the differential of f in the point $A = [x_0, y_0]$.

Example 92: Determine total differential and an approximate increment of the function $z = \frac{y}{x}$ in in the point A = [2, 1] for $\triangle x = 0.1$ and $\triangle y = 0.2$. Compare them.

Example 93: Using total differential compute approximate increment of the function $z = \arctan \frac{y}{x}$ in if x changes from $x_0 = 1$ to $x_1 = 1.2$ and y changes from $y_0 = -3$ to $y_1 = -3.1$.

Example 94: Approximate a value of the expression $\ln \left(\sqrt{9.03} - \sqrt{0.99} - 1 \right)$ using total differential of an appropriate function.

Example 95: Compute approximate value of the expression $0.98^{3.04}$ using total differential of an inappropriate function.

Example 96: Find an equation of both tangent plane τ and normal line n to the graph of the function $z = 2x^2 - 4y^2$ in the point T = [2, 1, ?]. Compute approximate value of this function in the point [2.2, 1.3].

Example 97: Find an equation of tangent plane τ to the surface $z = x^2 + xy - y^2 + x + 3$ and parallel to the given plane ρ : 5x - 3y - z = 0.

• Compute approximate values of a given expressions using total differential:

Example 98: $\sqrt[3]{7.95} \cdot \sqrt{8.96}$

Example 99: $\frac{\sqrt[4]{0.97}}{1.02^3 \cdot \sqrt[3]{0.99}}$

Example 100: $\sqrt{4.04} \cdot \ln 1.02 \cdot \arctan 0.9$

• Find an equation of both tangent plane τ and normal line n to the surface z=f(x,y) in the point T:

Example 101:
$$z = 4\sqrt{x^2 + y^2}$$
, $T = [3, 4, ?]$ **Example 102**: $z = xy$, $T = [0, 0, ?]$

Example 103:
$$z = x^2 \cdot \cos \frac{1}{y}$$
, $T = [1, \frac{2}{\pi}, ?]$ **Example 104**: $z = \frac{1}{x} \cdot \arcsin y$, $T = [\frac{1}{2}, \frac{\sqrt{2}}{2}, ?]$

• Find an equation of tangent plane τ to the surface z=f(x,y) and parallel to the plane ρ :

Example 105:
$$z = 2x^2 - y^2$$
, ρ : $8x - 6y - z - 15 = 0$

Example 106:
$$z = \ln(x^2 + 2y^2)$$
, $\rho : 2x - z + 5 = 0$

Example 107:
$$z = x^2 - y^2 + 6xy + 2x$$
, $\rho: 4x + 6y - z = 0$

II.5. Derivatives and differentials of high order

Example 108: Find all partial derivatives of second order of the function $f(x,y) = xy^3 - y \cdot e^{x+y^2}$.

Example 109: Prove that the function $u = u(x,t) = \operatorname{arctg}(2x - t)$ satisfies the partial differential equation $\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial t \partial x} = 0$ in \mathbb{E}_2 .

Example 110*: There is given the function f(x, y)

$$f(x,y) = \begin{cases} xy\frac{x^2 - 2y^2}{x^2 + y^2} & \text{for } [x,y] \neq [0,0], \\ 0 & \text{for } [x,y] = [0,0]. \end{cases}$$

Show that $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$.

Example 111: Let us consider the scalar field $\phi(x, y, z) = xy^2 + z^3 - xyz + 3$. Compute grad ϕ , rot grad ϕ .

Example 112: Let us consider the vector field $\vec{f} = (U, V, W) = \left(xy, x^2 - z^2, \frac{y}{x+z}\right)$. Compute div \vec{f} , rot \vec{f} , div rot \vec{f} .

Example 113*: Let the scalar field $\phi(x, y, z)$ has continuous partial derivatives of second order in a domain $D \subset \mathbb{E}_3$. Prove that rot grad $\phi = \vec{0}$ in D.

Example 114*: Let the vector field $\vec{f} = (U, V, W)$ has continuous partial derivatives of second order in a domain $D \subset \mathbb{E}_3$. Prove that div rot $\vec{f} = 0$ in D.

• Find differentials of the given order:

Example 115*: $z = \sin(2x + y)$, $d^2z = ?$

Example 116*: $z = x^3 - y^3 - xy + y^2$, $d^3z = ?$

Example 117*: $u = e^{2x-3y}$, $d^2u(A) = ?$, $d^3u(A) = ?$, $d^nu(A) = ?$, A = [0, 0].

Differentials can be used in the iportant **Taylor theorem**:

Let a function f(x,y) is differentiable(n+1) times in any interior point of a rectangle M with a center in the point $A = [x_0, y_0]$. Then for any point $[x, y] \in M$ there exists a point $[\xi, \eta] \in M$, such that

$$f(x,y) = f(A) + df(A) + \frac{d^2 f(A)}{2!} + \dots + \frac{d^n f(A)}{n!} + R_{n+1},$$

where $df(A) = df(x_0, y_0) = \frac{\partial f}{\partial x}(A) \cdot (x - x_0) + \frac{\partial f}{\partial y}(A) \cdot (y - y_0),$

$$d^2 f(A) = \frac{\partial^2 f}{\partial x^2}(A) \cdot (x - x_0)^2 + \frac{\partial^2 f}{\partial x \partial y}(A) \cdot (x - x_0)(y - y_0) + \frac{\partial^2 f}{\partial y^2}(A) \cdot (y - y_0)^2,$$

:

$$d^{n} f(A) = \sum_{k=0}^{n} {n \choose k} \frac{\partial^{n} f}{\partial x^{k} \partial y^{n-k}} (A) \cdot (x - x_{0})^{k} (y - y_{0})^{n-k},$$

$$R_{n+1} = \frac{1}{(n+1)!} d^{n+1} f(\xi, \eta).$$

Example 118*: Write Taylor expansion of the function $f(x,y) = x^3 - 3xy^2 + y^2 + 4x - 5y$ in a neighborhood of the point A = [2, -1] and use the result for approximation of the value of the function f in the point [2.1, -1.1].

Example 119*: Write Taylor expansion of the fourth order of the function $f(x, y) = \cos(x^2 + y^2)$ in a neighborhood of the point [0, 0].

• Find partial derivatives of second order of the given function:

Example 120: $\phi(s,t) = \ln(s^3 + t)$

Example 121:
$$\phi(x,t) = \frac{\cos x^2}{t}$$

Example 122: $f(x, y) = e^{ax+by}$

Example 123: Verify that the function $u(x,t) = \sin(x-ct)$ and the function $u(x,t) = \sin(\omega ct) \cdot \sin(\omega t)$ satisfy the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.

Example 124: Verify that the function $u(x,y) = e^x \cdot \sin y$ satisfies the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

• Expand the function f(x,y) using Taylor's theorem in a neighborhood of a point A:

Example 125*:
$$f(x,y) = x^3 + 5x^2 - 6xy + 2y^2$$
, $A = [1, -2]$

Example 126*:
$$f(x,y) = x^2 + 3xy - y^3$$
, $A = [2, -1]$

II.6. Gradient. Directional derivative

• Determine the angle between two gradients of given functions in a point A:

Example 127:
$$f(x, y, z) = x^y + yz$$
, $g(x, y, z) = \sin(xz) + x + y - \frac{z}{y} - 1$, $A = [1, 1, 0]$

Example 128:
$$f(x,y) = \arctan \frac{x}{y}$$
 $g(x,y) = y\sqrt{x}$, $A = [1,1]$

Example 129: Find a set in $D(f) \equiv \mathbb{E}_3$, in which the function $f(x, y, z) = x^2 + y^2 + z^2 - 2xyz$ has gradient, which equals to zero-vector $\vec{0}$.

Example 130: Find a set in $D(f) \equiv \mathbb{E}_2$, in which the function $f(x,y) = (x^2 + y^2)^{3/2}$ has a gradient of size 9.

• Compute directional derivative of function f in direction \vec{s} in a point A:

Example 131:
$$f(x,y) = 2x^4 + yz + y^3$$
, $\vec{s} = (3, -4)$, $A = [1, 2]$

Example 132: $f(x, y, z) = x^2 + 2y^2 - z^2$, A = [-3, 2, 4], direction \vec{s} is given by the vector $\overrightarrow{A}, \overrightarrow{B}$, where B = [-2, 4, 2]

Example 133: Compute directional derivative of the function $z = x^2 + \ln(x + y^2)$ in the point $A = [3, 2\sqrt{3}]$ in direction given by tangent line to parabola $y^2 = x$. Consider the vector with sharp angle with vector \vec{i} .

Example 134: Determine a direction, in which derivative of the function $f(x,y) = x^3y + \frac{x}{y^2} + 2y$ in the point A = [-1,1] in maximal. Compute this derivative.

Example 135: Let us have the function $z = \sqrt{2x + y}$, the point A = [1, 2], vector $\vec{s} = (-1, 1)$. Determine

- a) in which points the function z is differentiable.
- b) $\frac{\partial z}{\partial \vec{s}}(A)$,
- c) tangent plane to the graph of function z in the point T = [1, 2, ?].

Example 136: Determine a vector \vec{s} , in which direction the speed of change of the function values of $f(x, y, z) = x^2 + y^2 + z^2 - 2xyz$ in the point A = [1, -1, 2] is maximal. Compute this maximal speed.

Example 137: Determine points, in which gradient of the function $f(x, y, z) = x^2 + y^2 + z^2 - 2xyz$ is orthogonal to the axis x.

Example 138: Determine angle of vectors grad
$$f(A)$$
 and grad $g(A)$, where $f(x, y, z) = x - 3y + \sqrt{3xy} + z^3$, $g(x, y, z) = z\sqrt{x^2 + y^2} + xyz$, $A = [3, 4, 0]$.

• Compute gradient of given function:

Example 139:
$$f(x,y) = \frac{1}{\sqrt{(x^2 + y^2)^3}}$$
 Example 140: $f(x,y) = \sin(x^2y) + \frac{x^2}{3}$ Example 141: $f(x,y) = \ln(x + \sqrt{x^2 + y^2})$ Example 142: $f(x,y,z) = x^2yz + \ln y - 15$ Example 143: $f(u,v,t) = t\sqrt{u^2 + v^2}$

• Compute gradient of function in a given point A: