Mathematics II - Examples

II.10. Extremes

Necessary condition for existence of local extreme: Let the functions $f(x, y)$ is differentiable at a point A. If f has an local extreme at the point A, then $\operatorname{grad} f(A)=\overrightarrow{0}$.

Let us denote

$$
\triangle_{1}(A)=\frac{\partial^{2} f}{\partial x^{2}}(A), \quad \triangle_{2}(A)=\left|\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(A), & \frac{\partial^{2} f}{\partial x \partial y}(A) \\
\frac{\partial^{2} f}{\partial y \partial x}(A), & \frac{\partial^{2} f}{\partial y^{2}}(A)
\end{array}\right|
$$

(The determinant \triangle_{2} is called Hessian.)
Sufficient condition for existence of local extreme: Let the functions $f(x, y)$ has continuous partial derivatives of second order at a point A. Let the necessary condition $\operatorname{grad} f(A)=\overrightarrow{0}$ holds. Then

If $\triangle_{1}(A)>0$ and $\triangle_{2}(A)>0$, then the function f has sharp local minimum in point A.
If $\triangle_{1}(A)<0$ and $\triangle_{2}(A)>0$, then the function f has sharp local maximum in point A.
If $\triangle_{2}(A)<0$, then the function f has no local extreme in point A.

Procedure for calculating local extremes:

1st step: We determine so called "critical points", which satisfy the necessary condition, i.e.
a) points, in which the function $f(x, y)$ is not differentiable,
b) points, which are solution of the system of equations $\frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial y}=0$.

2nd step: For the points from b) we verify sufficient condition for existence of extreme.

- Find all local extremes of a given function:

Example 197: $z(x, y)=\sqrt{x^{2}+y^{2}}$
Example 198: $f(x, y)=x^{3}-x^{2}+\frac{1}{2} y^{2}-x y-6 x$
Example 199: $z(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$
Example 200: Implicit function $y=f(x)$ is defined by $F(x, y)=x^{2}+2 x y-y^{2}+8$.
Example 201*: $f(x, y, z)=x^{3}+y^{2}+z^{2}+12 x y+2 z$
Example 202: $z=2\left(x^{2}+y^{2}\right)$, if $x+y=2$
Example 203: $z=\frac{x}{3}+\frac{y}{4}$, if $x^{2}+y^{2}=1$
Example 204: $z=\sin ^{2} x+\sin ^{2} y$, if $y=x-\frac{\pi}{4}$
Example 205*: $z=x^{2}+2 y^{2}$, if $x^{2}-2 x+2 y^{2}+4 y=0$ [Hint: use Lagrange function.]
Example 206: Find a point in the plane $x+2 y-z+3=0$, which has the smallest sum of square distances from points $A=[1,1,1]$ and $B=[2,2,2]$.

Sufficient conditions for existence of global extremes on a given set: Let the functions $f(x, y)$ is continuous on nonempty bounded and closed set M. Then f has both global minimum and global maximum on this set.

A special case is constrained exreme. This is the case when $M=\left\{[x, y] \in \mathbb{E}_{2}: g(x, y)=0\right\}$ for some given function $g(x, y)$. Usually, we express one variable from the formula $g(x, y)=0$ (it is it possible) and putting it into given function f, we obtain a simpler problem to find extremes of function of one variable only.
Procedure for calculating global extrema on a nonempty, bounded and closed set M : Denote M^{0} an interior of set $M, \partial M$ is a boundary of M.

1st step: Verify fulfillment of sufficient conditions (see the theorem above) to justify existence of extremes.
2nd step: Find all critical points X of function f on M^{0}.
3rd step: Find all points $X \in \partial M$, in which function f can have global extremes.
4th step: Compute values of function f in all obtained points X. By comparation determine $\min _{M} f$ and $\max _{M} f$.

- Find global extremes of a given function $z=f(x, y)$ on a set M :

Example 207: $f(x, y)=x^{2}+y^{2}+x y-x-y, \quad M=\left\{[x, y] \in \mathbb{E}_{2}: x \geq 0, y \geq 0, x+y \leq 1\right\}$
Example 208: $f(x, y)=x^{2}+y^{2}-6 x+6 y, \quad M=\left\{[x, y] \in \mathbb{E}_{2}: x^{2}+y^{2} \leq 4\right\}$

- There is given function $f(x, y)$
a) Write necessary condition for existence of local extreme of a differentiable function of n variables at a point A.
b) Write sufficient condition for existence of local minimum, resp. maximum, of a function $f(x, y)$ at a point A.
c) Find all local extremes of the given function f, i.e. determine their location, type and value.

Example 209: $f(x, y)=x^{2}+12 y^{2}-6 x y+4 z$
Example 211: $f(x, y)=2 y-y^{2}-x \mathrm{e}^{x}$
Example 213: $f(x, y)=x^{3}+3 y^{2}-6 x y-9 x+8$
Example 215: $f(x, y)=x y+\frac{50}{x}+\frac{20}{y}$

Example 212: $f(x, y)=x^{3}+y^{2}-2 x^{2}-2 x y+6$
Example 214: $f(x, y)=x^{2}+2 x+y^{4}-4 y+7$
Example 216: $f(x, y)=x^{2}+x y+y^{2}-6 \ln x$

- Find all local extremes of a given function:

Example 217: $z=x^{2}+y-x \sqrt{y}-6 x+12$
Example 219: $z=\ln \left(1-x^{2}-y^{2}\right)$

Example 221: $z=\mathrm{e}^{x / 2}\left(x^{2}+y^{2}\right)$

Example 218: $z=x^{2}+y^{2}+6 x-4 y$
Example 220: $z=x^{3}+8 y^{3}-6 x y+5$
Example 222: $z=x^{3}+y^{3}+\frac{9}{2} x^{2}-3 y-12 x$

Example 223*: $x^{2}+y^{2}+z^{2}-4 x+6 y-2 z+13=0$
Example 224*: $x^{2}+x y-z^{2}+z+y+5=0$
Example 225*: $f(x, y, z)=x^{2}+y^{2}+z^{2}-6 x+2 y+6 z$
Example 226*: $f(x, y, z)=x^{2}+2 y^{2}+z^{3}-12 y z-6 x$
Example 227*: $z=\ln (x y)+x^{2}+y^{2}-4 x+7$
Example 228: a) Find all local extremes of the function $f(x, y)=2 x^{2}+y^{2}-x y+3 x+y+1$.
b) Justify existence and find global extremes of this function on a line segment $A B$, where $A=[0,2], B=[1,1]$.

- There is given function f and a set M.
a) Justify existence of global extremes of the function f on the given set M.
b) Find the global extremes, i.e. determine their location and compute value of both maximum and minimum of the function f on set M.

Example 229: $f(x, y)=x+\ln x-y^{2}, M=\left\{[x, y] \in \mathbb{E}_{2}: y=x+1,1 / 4 \leq x \leq 1\right\}$
Example 230: $f(x, y)=x^{2}+x y-3 x-y, M=\left\{[x, y] \in \mathbb{E}_{2}: x+y \leq 3, x \geq 0, y \geq 0\right\}$
Example 231: $f(x, y)=x^{2}-2 x+y^{2}, M=\left\{[x, y] \in \mathbb{E}_{2}: x^{2}+y^{2} \leq 9, y \geq 0\right\}$

- Find global extremes of function $f(x, y)$ on a set M :

Example 232: $f(x, y)=x^{2}+y^{2}-x y, M=\left\{[x, y] \in \mathbb{E}_{2}:|x|+|y| \leq 1\right\}$
Example 233: $f(x, y)=x^{2}-y^{2}, M=\left\{[x, y] \in \mathbb{E}_{2}: x 2+y^{2} \leq 4\right\}$
Example 234: $f(x, y)=x y(x-a)(y-b), M=\left\{[x, y] \in \mathbb{E}_{2}: 0 \leq x \leq a, 0 \leq y \leq b\right\}$
Example 235: $f(x, y)=x y(2-x-y), M=\left\{[x, y] \in \mathbb{E}_{2}: x \geq 0, y \geq 0, x+y \leq 1\right\}$
Example 236: $f(x, y)=x^{2}+y^{2}-x y+x+y-1, M=\left\{[x, y] \in \mathbb{E}_{2}: x \leq 0, y \geq 0, x-y+3 \geq 0\right\}$

