Mathematics II - Examples

II.10. Extrema

Necessary condition for existence of local extremum: Let the functions $f(x, y)$ is differentiable in a point A. If f has an local extremum in the point A, then $\operatorname{grad} f(A)=\overrightarrow{0}$.

Let us denote

$$
\triangle_{1}(A)=\frac{\partial^{2} f}{\partial x^{2}}(A), \quad \triangle_{2}(A)=\left|\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(A), & \frac{\partial^{2} f}{\partial x \partial y}(A) \\
\frac{\partial^{2} f}{\partial y \partial x}(A), & \frac{\partial^{2} f}{\partial y^{2}}(A)
\end{array}\right|
$$

(The determinant \triangle_{2} is called Hessian.)
Sufficient condition for existence of local extremum: Let the functions $f(x, y)$ has continuous partial derivatives of second order in a point A. Let the necessary condition $\operatorname{grad} f(A)=\overrightarrow{0}$ holds. Then

If $\triangle_{1}(A)>0$ and $\triangle_{2}(A)>0$, then the function f has sharp local minimum in point A. If $\triangle_{1}(A)>0$ and $\triangle_{2}(A)<0$, then the function f has sharp local maximum in point A. If $\triangle_{1}(A)<0$, then the function f has no extremum in point A.

