Mathematics II – Examples

II.7.* Derivative of composed function

Let the functions z = f(x, y), x = x(u, v), y = y(u, v) are differentiable. Then

$$\frac{\partial z}{\partial u} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u} \tag{1}$$

$$\frac{\partial z}{\partial v} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial v}$$
(2)

• Compute derivatives of a given differentiable functions:

Example 160: For the following differentiable functions z = f(x, y), $x = u \cos v$, $y = u \sin v$

- a) Compute the derivative of composed function $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$.
- b) Calculate for the particular function $z = f(x, y) = e^x \ln y$.

Example 161: $w = f(x^4 + y^4 - 2z^4)$. Compute $V = \frac{1}{4x^3} \frac{\partial w}{\partial x} + \frac{1}{4y^3} \frac{\partial w}{\partial y} + \frac{1}{4z^3} \frac{\partial w}{\partial z}$.

Example 162: Verify that the function y = f(x + at) + g(x - at) satisfies the partial differential equation $\frac{\partial^2 y}{\partial t^2} - a^2 \frac{\partial^2 y}{\partial x^2} = 0$, where *a* is a constant in \mathbb{R} . Assume that both *f* and *g* have continuous partial derivative of second order. [Hint: u = x + at, v = x - at, y = f(u) + g(v)]

Example 163: Verify that the function $z = f(\frac{y}{x})$ satisfies the equation $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$. Assume that f is a differentiable function.

Example 164: Let us have z = f(u, v), $u = x^2 - y^2$, $v = e^{xy}$. Compute the following differential expression $W = y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y}$, where f is a differentiable function.

Example 165: Let $f(u, v) = x^y$, where $x = u^2 + v^2$, $y = uv + v^2$. Compute $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ in the point A, which has coordinations u = 1, v = -1.

II.9. Implicit functions

Example 166: Prove, that the equation $x^3 + y^3 = 2x^2 + xy - 1$ defines unique implicit function y = f(x) in a neighbourhood of the point A = [1, 0]. Compute f'(1) and f''(1).

Example 167: Write equations of both a tangent line t and a normal line n in the point A = [1, 1] to the curve, which is defined by implicit way by the equation $F(x, y) \equiv x^3y + y^3x + x^2y - 3 = 0$.

Example 168: By the equation $\ln \sqrt{x^2 + y^2} = \operatorname{arctg} \frac{y}{x}$ for $x \neq 0$ is defined an implicit function y = f(x). Compute y' and y".

Example 169: Show, that the equation $x^2 + 2xy + y^2 - 4x + 2y - 3 = 0$ define an implicit function y = f(x), which graph is passing through the point A = [0, 1]. Check, if the function f is convex in

some neighbourhood of the point $x_0 = 0$. Write an equation of a tangent line to the graph of this function in the point A

Example 170: Prove, that the equation $F(x, y, z) \equiv z^3 + 3x^2z - 2xy = 0$ defines unique implicit function z = f(x, y) in a neighbourhood of the point A = [-1, -2, 1]. Compute grad f(-1, -2).

Example 171: In a neighborhood of the point [2, -2, 1] is given implicit function z = f(x, y) by the equation $\ln z + x^2yz + 8 = 0$. Compute directional derivative $\frac{\partial z}{\partial \vec{s}}(A)$, where $\vec{s} = \overrightarrow{AB}$, A = [2, -2], B = [3, -3].

Example 172: Write equations of both a tangent plane τ and a normal line n to a surface z = z(x, y) defined implicitly by the equation $F(x, y, z) \equiv x^2 + y^2 + z^2 - 25 = 0$ in the point A = [3, 0, 4].

Example 173: Write an equation of a tangent plane to a surface defined implicitly by the equation $F(x, y, z) \equiv x(y + z) + z^2 - 5 = 0$ parallel with the plane ρ : 3x - 3y + 6z = 2. [Note: There are two tangent planes satisfying the given condition.]

Example 174*: Write an equation of a tangent line in the point A = [-2, 1, 6] to a curve in \mathbb{E}_3 , which is defined implicitly as an intersection of surfaces $2x^2 + 3y^2 + z^2 = 47$, $x^2 + 2y^2 = z$.

Example 175: a) Find a unit normal vector \vec{n}^0 to the surface, which is defined implicitly in the form $F(x, y, z) \equiv x^2 + y^2 + z^2 - 3 = 0$ in the point A = [1, 1, 1].

b) Compute
$$\frac{\partial g}{\partial \vec{n}^0}$$
, where $g(x, y, z) = xy^2 z^3$.

• Write equation of both tangent line and normal line to a curve given implicitly by the equation F(x, y) = 0 in a point A:

Example 176: $F(x, y) \equiv \arcsin x + xy^2 = 0$, A = [0, 2]

Example 177: $F(x, y) \equiv x^2y + xy^2 - axy - a^3 = 0$, A = [a, a]

Example 178: Prove, that the equation $\ln(x + y) + 2x + y = 0$ defines a function f(x, y), which satisfies f(-1) = 2. Write equation of tangent line to the curve y = f(x) in the point A = [-1, 2].

- Let the equation F(x, y) = 0 defines implicit function of one variable y = f(x)
 - a) Compute partial derivatives of first order of the function F.
 - b) Verify, that the equation F(x, y) = 0 defines implicit function y = f(x) in a neighborhood of a point $[x_0, y_0]$, which has a continuous derivative f'(x) in some neighborhood of a point x_0 .
 - c) Compute $f'(x_0)$ and write equation of both tangent line and normal line to a graph of the function f in touch point $[x_0, y_0]$. Describe behavior of this function in point x_0 , i.e. if the function is increasing, decreasing.
 - d) Use the equation of tangent line for approximation of a value y = f(x) in a given point x_1 . Sketch the tangent line.

Example 179: $F(x, y) = x^2y - x^3 - 2\sqrt{y} + 1$, $[x_0, y_0] = [1, 4]$, $x_1 = 0.8$ Example 180: $F(x, y) = ye^x + y^2 - 2x^2y - 2$, $[x_0, y_0] = [0, 1]$, $x_1 = -0.3$ Example 181: $F(x, y) = \ln(x - y) + 2x + y^2 - 2$, $[x_0, y_0] = [1, 0]$, $x_1 = 1.1$ Example 182: $F(x, y) = xye^{x-y} - \frac{2}{9}$, $[x_0, y_0] = [1, 2]$, $x_1 = 1.1$

- Consider a function y = f(x) of one variable, which is defined implicitly by an equation F(x, y) = 0.
 - a) Verify all assumptions, under which the equation F(x, y) = 0 defines implicit function y = f(x), whose graph is passing through a point $[x_0, y_0]$ and which has continuous 1st and 2nd derivative in a neighborhood of x_0 .
 - b) Compute $f'(x_0)$ and $f''(x_0)$.(Computation of second derivative is not requested in exams of level B.)
 - c) Write Taylor's polynomial of second order $T_2(x)$ of the function f with center in point x_0 . Using $T_2(x)$ compute approximate value of $f(x_1)$.
 - d) Sketch a graph of function f in a neighborhood of $[x_0, y_0]$.

Example 183: $F(x, y) = x^3 + 2x^2y + y^4 - 1 = 0$, $[x_0, y_0] = [2, -1]$, $x_1 = 2.2$ Example 184: $F(x, y) = x^3 + \frac{y^2}{2} - x^2y - 1 = 0$, $[x_0, y_0] = [1, 2]$, $x_1 = 1.2$ Example 185: $F(x, y) = x^3 + xy^2 + xy - 7 = 0$, $[x_0, y_0] = [1, 2]$, $x_1 = 0.9$ Example 186: $F(x, y) = x^2 + 2y^2 - 2xy - y = 0$, $[x_0, y_0] = [1, 1]$, $x_1 = 1.2$

• Write equations of both tangent plane τ and normal line n to surface F(x, y, z) = 0 in a point A:

Example 187: $x^2 + 2y^2 + 3z^2 - 21 = 0$, A = [1, 2, 2]Example 188: $x^3 + y^3 + z^3 + xyz - 6 = 0$, A = [1, 2, -1]Example 189: $xyz^2 - x - y - z = 0$, A = [1, -1, -1]

• Write equation of tangent plane to surface F(x, y, z) = 0, which is parallel with plane ρ :

Example 190: $x^2 + y^2 + z^2 - 1 = 0$, ρ : x + 2y + z = 0

Example 191: $x^2 + 2y^2 + 3z^2 - 21 = 0$, ρ : x + 4y + 6z = 0

Example 192: Let us have the implicit function f(x) given by $e^z - xyz = e$. Compute $f_x(A)$, $f_y(A)$, $f_{xy}(A)$, where A = [0, e, 1].

Example 193: Consider two surfaces given by $x + 2y - \ln z + 4 = 0$ and $x^2 - xy - 8x + \frac{1}{2}z^2 + \frac{11}{2} = 0$. Determine relative position of two tangent planes to both surfaces in a common touch point T = [2, -3, 1].

- Consider a function y = f(x, y) of two variables, which is defined implicitly by an equation F(x, y, z) = 0.
 - a) Verify all assumptions, under which the equation F(x, y, z) = 0 defines implicit function z = f(x, y), whose graph is passing through a point $[x_0, y_0, z_0]$ and which has continuous partial derivatives of first order in a neighborhood of a point $[x_0, y_0]$.
 - b) Compute $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and $\operatorname{grad} f(x_0, y_0)$.
 - c) Write equation of both tangent plane τ and normal line n to graph of the function f in point A.
 - d) Compute differential of function f in point $[x_0, y_0]$. Compute approximate value $f(x_1, y_1)$.
 - d) Compute directional derivative of f in point $[x_0, y_0]$ and in direction \vec{u} . Find direction \vec{s} in which function f grows most rapidly. Compute directional derivative of f in point $[x_0, y_0]$ and in direction \vec{s} .

(Examples with implicit function of two variables do not belong to requests for exams of level B.

Example 194: $F(x, y, z) = 2x^3yz - x + y^3 + z^3 - 2 = 0$, A = [1, 2, -1], $[x_1, y_1] = [0.9, 2.1]$, $\vec{u} = (2, 4)$ Example 195: $F(x, y, z) = x^3 + 3xy^2z + 2yz^3 = 0$, A = [1, -1, -1], $[x_1, y_1] = [0.9, -1.1]$, $\vec{u} = (1, -2)$

Example 196: $F(x, y, z) = ze^{x+y} - xy + z^2 - 6 = 0$, A = [0, 0, 2], $[x_1, y_1] = [0.2, 0.1]$, $\vec{u} = (1, 2)$