Mathematics II - Examples

II.7.* Derivative of composed function

Let the functions $z=f(x, y), x=x(u, v), y=y(u, v)$ are differentiable. Then

$$
\begin{align*}
\frac{\partial z}{\partial u} & =\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u} \tag{1}\\
\frac{\partial z}{\partial v} & =\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial v} \tag{2}
\end{align*}
$$

- Compute derivatives of a given differentiable functions:

Example 160: For the following differentiable functions $z=f(x, y), x=u \cos v, y=u \sin v$
a) Compute the derivative of composed function $\frac{\partial z}{\partial u}, \frac{\partial z}{\partial v}$.
b) Calculate for the particular function $z=f(x, y)=\mathrm{e}^{x} \ln y$.

Example 161: $w=f\left(x^{4}+y^{4}-2 z^{4}\right)$. Compute $V=\frac{1}{4 x^{3}} \frac{\partial w}{\partial x}+\frac{1}{4 y^{3}} \frac{\partial w}{\partial y}+\frac{1}{4 z^{3}} \frac{\partial w}{\partial z}$.
Example 162: Verify that the function $y=f(x+a t)+g(x-a t)$ satisfies the partial differential equation $\frac{\partial^{2} y}{\partial t^{2}}-a^{2} \frac{\partial^{2} y}{\partial x^{2}}=0$, where a is a constant in \mathbb{R}. Assume that both f and g have continuous partial derivative of second order. [Hint: $u=x+a t, v=x-a t, y=f(u)+g(v)$]

Example 163: Verify that the function $z=f\left(\frac{y}{x}\right)$ satisfies the equation $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=0$. Assume that f is a differentiable function.

Example 164: Let us have $z=f(u, v), u=x^{2}-y^{2}, v=\mathrm{e}^{x y}$. Compute the following differential expression $W=y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}$, where f is a differentiable function.

Example 165: Let $f(u, v)=x^{y}$, where $x=u^{2}+v^{2}, y=u v+v^{2}$. Compute $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ in the point A, which has coordinations $u=1, v=-1$.

II.9. Implicit functions

Example 166: Prove, that the equation $x^{3}+y^{3}=2 x^{2}+x y-1$ defines unique implicit function $y=f(x)$ in a neighbourhood of the point $A=[1,0]$. Compute $f^{\prime}(1)$ and $f^{\prime \prime}(1)$.

Example 167: Write equations of both a tangent line t and a normal line n in the point $A=[1,1]$ to the curve, which is defined by implicit way by the equation $F(x, y) \equiv x^{3} y+y^{3} x+x^{2} y-3=0$.

Example 168: By the equation $\ln \sqrt{x^{2}+y^{2}}=\operatorname{arctg} \frac{y}{x}$ for $x \neq 0$ is defined an implicit function $y=f(x)$. Compute y^{\prime} and $y^{\prime \prime}$.

Example 169: Show, that the equation $x^{2}+2 x y+y^{2}-4 x+2 y-3=0$ define an implicit function $y=f(x)$, which graph is passing through the point $A=[0,1]$. Check, if the function f is convex in
some neighbourhood of the point $x_{0}=0$. Write an equation of a tangent line to the graph of this function in the point A

Example 170: Prove, that the equation $F(x, y, z) \equiv z^{3}+3 x^{2} z-2 x y=0$ defines unique implicit function $z=f(x, y)$ in a neighbourhood of the point $A=[-1,-2,1]$. Compute $\operatorname{grad} f(-1,-2)$.

Example 171: In a neighborhood of the point $[2,-2,1]$ is given implicit function $z=f(x, y)$ by the equation $\ln z+x^{2} y z+8=0$. Compute directional derivative $\frac{\partial z}{\partial \vec{s}}(A)$, where $\vec{s}=\overrightarrow{A B}, A=[2,-2], B=$ $[3,-3]$.

Example 172: Write equations of both a tangent plane τ and a normal line n to a surface $z=z(x, y)$ defined implicitly by the equation $F(x, y, z) \equiv x^{2}+y^{2}+z^{2}-25=0$ in the point $A=[3,0,4]$.

Example 173: Write an equation of a tangent plane to a surface defined implicitly by the equation $F(x, y, z) \equiv x(y+z)+z^{2}-5=0$ parallel with the plane $\rho: 3 x-3 y+6 z=2$.
[Note: There are two tangent planes satisfying the given condition.]
Example 174*: Write an equation of a tangent line in the point $A=[-2,1,6]$ to a curve in \mathbb{E}_{3}, which is defined implicitly as an intersection of surfaces $2 x^{2}+3 y^{2}+z^{2}=47, x^{2}+2 y^{2}=z$.

Example 175: a) Find a unit normal vector \vec{n}^{0} to the surface, which is defined implicitly in the form $F(x, y, z) \equiv x^{2}+y^{2}+z^{2}-3=0$ in the point $A=[1,1,1]$.
b) Compute $\frac{\partial g}{\partial \vec{n}^{0}}$, where $g(x, y, z)=x y^{2} z^{3}$.

- Write equation of both tangent line and normal line to a curve given implicitly by the equation $F(x, y)=0$ in a point A :

Example 176: $F(x, y) \equiv \arcsin x+x y^{2}=0, \quad A=[0,2]$
Example 177: $F(x, y) \equiv x^{2} y+x y^{2}-a x y-a^{3}=0, \quad A=[a, a]$
Example 178: Prove, that the equation $\ln (x+y)+2 x+y=0$ defines a function $f(x, y)$, which satisfies $f(-1)=2$. Write equation of tangent line to the curve $y=f(x)$ in the point $A=[-1,2]$.

- Let the equation $F(x, y)=0$ defines implicit function of one variable $y=f(x)$
a) Compute partial derivatives of first order of the function F.
b) Verify, that the equation $F(x, y)=0$ defines implicit function $y=f(x)$ in a neighborhood of a point $\left[x_{0}, y_{0}\right]$, which has a continuous derivative $f^{\prime}(x)$ in some neighborhood of a point x_{0}.
c) Compute $f^{\prime}\left(x_{0}\right)$ and write equation of both tangent line and normal line to a graph of the function f in touch point $\left[x_{0}, y_{0}\right]$. Describe behavior of this function in point x_{0}, i.e. if the function is increasing, decreasing.
d) Use the equatiuon of tangent line for approximation of a value $y=f(x)$ in a given point x_{1}. Sketch the tangent line.

Example 179: $F(x, y)=x^{2} y-x^{3}-2 \sqrt{y}+1, \quad\left[x_{0}, y_{0}\right]=[1,4], \quad x_{1}=0.8$
Example 180: $F(x, y)=y \mathrm{e}^{x}+y^{2}-2 x^{2} y-2, \quad\left[x_{0}, y_{0}\right]=[0,1], \quad x_{1}=-0.3$
Example 181: $F(x, y)=\ln (x-y)+2 x+y^{2}-2, \quad\left[x_{0}, y_{0}\right]=[1,0], \quad x_{1}=1.1$
Example 182: $F(x, y)=x y \mathrm{e}^{x-y}-\frac{2}{\mathrm{e}}, \quad\left[x_{0}, y_{0}\right]=[1,2], \quad x_{1}=1.1$

- Consider a function $y=f(x)$ of one variable, which is defined implicitly by an equation $F(x, y)=0$.
a) Verify all assumptions, under which the equation $F(x, y)=0$ defines implicit function $y=f(x)$, whose graph is passing through a point $\left[x_{0}, y_{0}\right]$ and which has continuous 1st and 2nd derivative in a neighborhood of x_{0}.
b) Compute $f^{\prime}\left(x_{0}\right)$ and $f^{\prime \prime}\left(x_{0}\right)$.(Computation of second derivative is not requested in exams of level B.)
c) Write Taylor's polynomial of second order $T_{2}(x)$ of the function f with center in point x_{0}. Using $T_{2}(x)$ compute approximate value of $f\left(x_{1}\right)$.
d) Sketch a graph of function f in a neighborhood of $\left[x_{0}, y_{0}\right]$.

Example 183: $F(x, y)=x^{3}+2 x^{2} y+y^{4}-1=0, \quad\left[x_{0}, y_{0}\right]=[2,-1], \quad x_{1}=2.2$
Example 184: $F(x, y)=x^{3}+\frac{y^{2}}{2}-x^{2} y-1=0, \quad\left[x_{0}, y_{0}\right]=[1,2], \quad x_{1}=1.2$
Example 185: $F(x, y)=x^{3}+x y^{2}+x y-7=0, \quad\left[x_{0}, y_{0}\right]=[1,2], \quad x_{1}=0.9$
Example 186: $F(x, y)=x^{2}+2 y^{2}-2 x y-y=0, \quad\left[x_{0}, y_{0}\right]=[1,1], \quad x_{1}=1.2$

- Write equations of both tangent plane τ and normal line n to surface $F(x, y, z)=0$ in a point A :

Example 187: $x^{2}+2 y^{2}+3 z^{2}-21=0, \quad A=[1,2,2]$
Example 188: $x^{3}+y^{3}+z^{3}+x y z-6=0, \quad A=[1,2,-1]$
Example 189: $x y z^{2}-x-y-z=0, \quad A=[1,-1,-1]$

- Write equation of tangent plane to surface $F(x, y, z)=0$, which is parallel with plane ρ :

Example 190: $x^{2}+y^{2}+z^{2}-1=0, \quad \rho: x+2 y+z=0$
Example 191: $x^{2}+2 y^{2}+3 z^{2}-21=0, \quad \rho: x+4 y+6 z=0$
Example 192: Let us have the implicit function $f(x)$ given by $\mathrm{e}^{z}-x y z=$ e. Compute $f_{x}(A), f_{y}(A), f_{x y}(A)$, where $A=[0, \mathrm{e}, 1]$.

Example 193: Consider two surfaces given by $x+2 y-\ln z+4=0$ and $x^{2}-x y-8 x+\frac{1}{2} z^{2}+\frac{11}{2}=0$. Determine relative position of two tangent planes to both surfaces in a common touch point $T=[2,-3,1]$.

- Consider a function $y=f(x, y)$ of two variables, which is defined implicitly by an equation $F(x, y, z)=0$.
a) Verify all assumptions, under which the equation $F(x, y, z)=0$ defines implicit function $z=f(x, y)$, whose graph is passing through a point $\left[x_{0}, y_{0}, z_{0}\right]$ and which has continuous partial derivatives of first order in a neighborhood of a point $\left[x_{0}, y_{0}\right]$.
b) Compute $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\operatorname{grad} f\left(x_{0}, y_{0}\right)$.
c) Write equation of both tangent plane τ and normal line n to graph of the function f in point A.
d) Compute differential of function f in point $\left[x_{0}, y_{0}\right]$. Compute approximate value $f\left(x_{1}, y_{1}\right)$.
d) Compute directional derivative of f in point $\left[x_{0}, y_{0}\right]$ and in direction \vec{u}. Find direction \vec{s} in which function f grows most rapidly. Compute directional derivative of f in point $\left[x_{0}, y_{0}\right]$ and in direction \vec{s}.
(Examples with implicit function of two variables do not belong to requests for exams of level B.

Example 194: $F(x, y, z)=2 x^{3} y z-x+y^{3}+z^{3}-2=0, \quad A=[1,2,-1], \quad\left[x_{1}, y_{1}\right]=[0.9,2.1], \quad \vec{u}=(2,4)$
Example 195: $F(x, y, z)=x^{3}+3 x y^{2} z+2 y z^{3}=0, \quad A=[1,-1,-1], \quad\left[x_{1}, y_{1}\right]=[0.9,-1.1], \quad \vec{u}=$ $(1,-2)$

Example 196: $F(x, y, z)=z \mathrm{e}^{x+y}-x y+z^{2}-6=0, \quad A=[0,0,2], \quad\left[x_{1}, y_{1}\right]=[0.2,0.1], \quad \vec{u}=(1,2)$

