Mathematics II - Examples

II.7.* Derivative of composed function

Let the functions $z=f(x, y), x=x(u, v), y=y(u, v)$ are differentiable. Then

$$
\begin{align*}
& \frac{\partial z}{\partial u}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u} \tag{1}\\
& \frac{\partial z}{\partial v}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial v} \tag{2}
\end{align*}
$$

Example 160: For the following differentiable functions $z=f(x, y), x=u \cos v, y=u \sin v$
a) Compute the derivative of composed function $\frac{\partial z}{\partial u}, \frac{\partial z}{\partial v}$.
b) Calculate for the particular function $z=f(x, y)=\mathrm{e}^{x} \ln y$.

Example 161: $w=f\left(x^{4}+y^{4}-2 z^{4}\right)$. Compute $V=\frac{1}{4 x^{3}} \frac{\partial w}{\partial x}+\frac{1}{4 y^{3}} \frac{\partial w}{\partial y}+\frac{1}{4 z^{3}} \frac{\partial w}{\partial z}$.
Example 162: Verify that the function $y=f(x+a t)+g(x-a t)$ satisfies the partial differential equation $\frac{\partial^{2} y}{\partial t^{2}}-a^{2} \frac{\partial^{2} y}{\partial x^{2}}=0$, where a is a constant in \mathbb{R}. Assume that both f and g have continuous partial derivative of second order. [Hint: $u=x+a t, v=x-a t, y=f(u)+g(v)$]
Example 163: Verify that the function $z=f\left(\frac{y}{x}\right)$ satisfies the equation $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=0$. Assume that f is a differentiable function.

Example 164: Let us have $z=f(u, v), u=x^{2}-y^{2}, v=\mathrm{e}^{x y}$. Compute the following differential expression $W=y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}$, where f is a differentiable function.

Example 165: Let $f(u, v)=x^{y}$, where $x=u^{2}+v^{2}, y=u v+v^{2}$. Compute $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ in the point A, which has coordinations $u=1, v=-1$.

II.9. Implicit functions

Example 166: Prove, that the equation $x^{3}+y^{3}=2 x^{2}+x y-1$ defines unique implicit function $y=f(x)$ in a neighbourhood of the point $A=[1,0]$. Compute $f^{\prime}(1)$ and $f^{\prime \prime}(1)$.
Example 167: Write equations of both a tangent line t and a normal line n in the point $A=[1,1]$ to the curve, which is defined by implicit way by the equation $F(x, y) \equiv x^{3} y+y^{3} x+x^{2} y-3=0$.
Example 168: By the equation $\ln \sqrt{x^{2}+y^{2}}=\operatorname{arctg} \frac{y}{x}$ for $x \neq 0$ is defined an implicit function $y=f(x)$. Compute y^{\prime} and $y^{\prime \prime}$.
Example 169: Show, that the equation $x^{2}+2 x y+y^{2}-4 x+2 y-3=0$ define an implicit function $y=f(x)$, which graph is passing through the point $A=[0,1]$. Check, if the function f is convex in some neighbourhood of the point $x_{0}=0$. Write an equation of a tangent line to the graph of this function in the point A
Example 170: Prove, that the equation $F(x, y, z) \equiv z^{3}+3 x^{2} z-2 x y=0$ defines unique implicit function $z=f(x, y)$ in a neighbourhood of the point $A=[-1,-2,1]$. Compute $\operatorname{grad} f(-1,-2)$.

Example 171: In a neighborhood of the point $[2,-2,1]$ is given implicit function $z=f(x, y)$ by the equation $\ln z+x^{2} y z+8=0$. Compute directional derivative $\frac{\partial z}{\partial \vec{s}}(A)$, where $\vec{s}=\overrightarrow{A B}, A=[2,-2], B=[3,-3]$.

Example 172: Write equations of both a tangent plain τ and a normal line n to a surface $z=z(x, y)$ defined implicitly by the equation $F(x, y, z) \equiv x^{2}+y^{2}+z^{2}-25=0$ in the point $A=[3,0,4]$.
Example 173: Write an equation of a tangent plain to a surface defined implicitly by the equation $F(x, y, z) \equiv x(y+z)+z^{2}-5=0$ parallel with the plain $\rho: 3 x-3 y+6 z=2$.
[Note: There are two tangent plains satisfying the given condition.]

