Mathematics II – Examples

II.7.* Derivative of composed function

Let the functions z = f(x, y), x = x(u, v), y = y(u, v) are differentiable. Then

$$\frac{\partial z}{\partial u} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u} \tag{1}$$

$$\frac{\partial z}{\partial v} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial v} \tag{2}$$

Example 160: For the following differentiable functions z = f(x, y), $x = u \cos v$, $y = u \sin v$

- a) Compute the derivative of composed function $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$.
- b) Calculate for the particular function $z = f(x, y) = e^x \ln y$.

Example 161: $w = f(x^4 + y^4 - 2z^4)$. Compute $V = \frac{1}{4x^3} \frac{\partial w}{\partial x} + \frac{1}{4y^3} \frac{\partial w}{\partial y} + \frac{1}{4z^3} \frac{\partial w}{\partial z}$.

Example 162: Verify that the function y = f(x + at) + g(x - at) satisfies the partial differential equation $\frac{\partial^2 y}{\partial t^2} - a^2 \frac{\partial^2 y}{\partial x^2} = 0$, where a is a constant in \mathbb{R} . Assume that both f and g have continuous partial derivative of second order. [Hint: u = x + at, v = x - at, y = f(u) + g(v)]

Example 163: Verify that the function $z = f(\frac{y}{x})$ satisfies the equation $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$. Assume that f is a differentiable function.

Example 164: Let us have z = f(u, v), $u = x^2 - y^2$, $v = e^{xy}$. Compute the following differential expression $W = y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y}$, where f is a differentiable function.

Example 165: Let $f(u,v) = x^y$, where $x = u^2 + v^2$, $y = uv + v^2$. Compute $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ in the point A, which has coordinations u = 1, v = -1.

II.9. Implicit functions

Example 166: Prove, that the equation $x^3 + y^3 = 2x^2 + xy - 1$ defines unique implicit function y = f(x) in a neighbourhood of the point A = [1, 0]. Compute f'(1) and f''(1).

Example 167: Write equations of both a tangent line t and a normal line n in the point A = [1, 1] to the curve, which is defined by implicit way by the equation $F(x, y) \equiv x^3y + y^3x + x^2y - 3 = 0$.

Example 168: By the equation $\ln \sqrt{x^2 + y^2} = \operatorname{arctg}_x^y$ for $x \neq 0$ is defined an implicit function y = f(x). Compute y' and y".

Example 169: Show, that the equation $x^2 + 2xy + y^2 - 4x + 2y - 3 = 0$ define an implicit function y = f(x), which graph is passing through the point A = [0, 1]. Check, if the function f is convex in some neighbourhood of the point $x_0 = 0$. Write an equation of a tangent line to the graph of this function in the point A

Example 170: Prove, that the equation $F(x, y, z) \equiv z^3 + 3x^2z - 2xy = 0$ defines unique implicit function z = f(x, y) in a neighbourhood of the point A = [-1, -2, 1]. Compute $\operatorname{grad} f(-1, -2)$.

Example 171: In a neighborhood of the point [2, -2, 1] is given implicit function z = f(x, y) by the equation $\ln z + x^2yz + 8 = 0$. Compute directional derivative $\frac{\partial z}{\partial \vec{s}}(A)$, where $\vec{s} = \overrightarrow{AB}$, A = [2, -2], B = [3, -3].

Example 172: Write equations of both a tangent plane τ and a normal line n to a surface z=z(x,y) defined implicitly by the equation $F(x,y,z) \equiv x^2 + y^2 + z^2 - 25 = 0$ in the point A = [3,0,4].

Example 173: Write an equation of a tangent plane to a surface defined implicitly by the equation $F(x, y, z) \equiv x(y + z) + z^2 - 5 = 0$ parallel with the plane $\rho: 3x - 3y + 6z = 2$. [Note: There are two tangent planes satisfying the given condition.]