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Introduction

This text contains an approximate list of definitions and theorems that students
meet in the Mathematics I course in their first term of studies at the Faculty of Me-
chanical Engineering at the Czech Technical University, together with brief remarks,
comments and examples. Some proofs and derivations of formulas are also included.
These can be regarded as useful exercises leading to a better understanding of the
sense and properties of notions that we deal with. The text was not written to be a
completely independent textbook, especially due to brief explications and the limited
number of solved and unsolved problems. It is important to emphasize that, in order
to be well prepared for the examination in Mathematics I, it is necessary to solve
problems individually and to think over a large number of examples. Appropriate
examples and exercises can be found e.g. in the textbook [NK].

This revised edition contains Chapter V on the definite (Riemann’s) integral.
This topic is studied at the end of the winter term in the Mathematics I course in
the last years, but it is usually examined in the summer term together with double,
triple and other integrals. However, it is logical to include the chapter on the Rie-
mann integral into the textbook Mathematics I because it completes the calculus of
functions of one variable.

This text is a free English version of the textbook [Ne].

Numbers of paragraphs or sections, whose contents are not actually required for
the examination and which are addressed to more interested readers, are marked by
the symbol * on the right side above.

The author wishes to express his thanks to Mr. Robin Healey for carefully reading
the text, correcting the language and especially for his readiness to discuss with the
author the right sense of various formulations and to explain to him some fine points
of the English language. If you still find some misprints, incorrect or not quite clear
expressions or connections in the text then it is only the author who is responsible.
It will be a pleasure for both Mr. Healey and the author if the text helps readers not
only in their studies of mathematics, but if it also contributes to their orientation in
English mathematical terminology and phraseology, and if it encourages them to go
on and study further scientific literature written in English.

We suppose that readers are familiar with the notion of a set and that they know
the set operations union, intersection, complement and difference. Let us remind the
reader that an empty set is denoted by @. We can use this notation for describing
aset: M = {z; V(z)}. We read this as: M is the set of all elements = such that
V(z) holds. (V(z) is some statement that can be made about z.)

We also assume knowledge of the following notions:

~ mapping (of a set A to a set B — we use for instance the denotation F : A = B),

- one-to-one mapping (also called injective mapping),

— mapping of the set A onto the set B (also called surjective mapping),

— bijective mapping of the set A onto the set B (a mapping which is injective and
surjective),

- inverse mapping (we denote this by F_;),

~ composite mapping (we denote this by F xG or FoG),
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- domain of a mapping (we denote this by D(F)),

~ range of a mapping (we denote this by R(F)).

Further topics which are also assumed to be known from secondary school include
some elementary notions of mathematical logic, i.e. a statement and operations with
statements:

- negation of a statement X (we denote this non X),

— conjunction of statements X and ¥ (we denote this X AY and we read it “both
X and Y hold” or briefly “X and Y”),

= alte):mat:'ve of statements X and Y (we denote this X VY and we read it “X or
V :

— implication (we denote this X = Y and we read it “X implies Y, “Y follows
from X", “f X holds then Y also holds”, “X is a sufficient condition for Y, “Y
is a necessary condition for X”, “Y holds provided that X holds”, etc.) and

- equivalence (we denote this X <= Y and we read it “X holds if and only if Y
holds”, “X is equivalent to ¥”, “X is a necessary and sufficient condition for
Y”, “Y is a necessary and sufficient condition for X", etc.).

We shall often use so called quantifiers:

- a universal quantifier is denoted by V and it can be used for example in the
sentence: Vz € I : V(z) - we read it “for each z € I the statement V(z)
holds” or “each z € I has the property V(z)”,

- an ezistential quantifier is denoted by 3 and it can be used for example in this
way: 3z €l : V(z) — we read it “There exists z € I such that the statement
V(z) holds.”

Quantifiers can also be used to create more complicated statements and assertions.
Do not underestimate them! Their incorrect usage can entirely change the sense of
various statements. You can compare e.g. these two sentences which differ only in
the order of the quantifiers: 1) “To every married man there exists a woman who is
his wife.” 2) “There exists a married man such that every woman is his wife.”

If n is a natural number (we use the denotation: n € IN) then the set of all
ordered n—tuples of real numbers is denoted by IR®. Thus, IR? is the set of all
ordered pairs of real numbers, IR? is the set of all ordered 3-tuples of real numbers,
etc. An exception is made in the case n = 1 where instead of RR!, we write only
RR. Elements of IR™ are written for example in this way: [a3,a2], [1,3] (if n = 2),
[z1,23,23] (if n = 3), [%1,22,...,7n), etc. If the distance of any two elements
X =[21,%2,...,2Zn] and Y = [y1,¥2,...,¥n] from IR" is defined in such a way that
it is equal to ;

dX,Y) = V(@ -0n)? + @2a-1)? + ... + (Tn — ta)?

then IR™ becomes a so called n-dimensional Fuclidean space. This is denoted by IE, .
Elements of IE,, are often called “points” and the distance of two points X and Y is
also denoted by || X —Y||. IE; can be imagined as a straight line, IE; as a plane, etc.




I. Linear algebra

I.1. Vector spaces
1.1.1. The n—dimensional arithmetic space. Let us define the sum of any two
elements [z1,Z2,...,Zn], [¥1,¥2,-..,¥n] from IR" by the formula
[371:1"23- "527“] + tylsyﬁ"”vyn] = [3;1 + Y1, T2 +y2=---,-’17n +yn]

and the product of any element [zy,Z3,...,%n] from IR and any real number A by

the formula
A (21,22, .., 20] = [Az1, AZa,y. .., ATg ]

The set IR™ with these two operations is called the n-dimensional arithmetic space.
Its elements (i.e. n—tuples of real numbers) are called arithmetic vectors.

1.1.2. Vectors in IE; and in IE3. Oriented segments AB and CD in IE; are called
equivalent if they can be identified by parallel shifting. Each class of all oriented
segments in IE; which are equivalent one to another is called a vector in IE3. Any
segment from this class is called a representative of the vector. The set of all vectors
in IE; is denoted by V(IE3).

Each vector in IE; is uniquely defined by any of its representatives. Vectors are
denoted by small boldface letters (for example u, v, etc.). In a chosen Cartesian
coordinate system, every vector can be given by means of its coordinates. These are
an ordered pair of numbers (in round brackets) which is obtained in such a way that
the representative of the vector is chosen to be the oriented segment coming out of
the origin, and the coordinates of the end point of this segment are the coordinates
of the vector.

If u = (u1,u2) and v = (vy,vs) are vectors in IE; and A is a real number, then
we can define the sum of u and v and the product of u and the number A by the
equalities:

u+ v = (u+v, ug + va),

Acu = (Aug, dug).

It can easily be verified that the operations defined above have the properties:
(a) IE; is closed with respect to both operations. That means: if u,v € V(IEg)

and A € R then the sum u+ v and the product A-u also belong to V(IE3).
(b) Ifu, v, w € V(IE3) and o, 8 € R then

(b1) u+v=v+u,

(b2) (u+v)+w=u+(v+w),

(b3) l‘u = u,

(b4) a-(f-u) = (af) u,

(b5) a-(u+v) =auta-v,

(b6) (@+B)'u = a-u+pf-u.
{c) There exists a so called zero vector o = (0,0) in V(IEz). If u is any vector from

V(IE;) then

u-+o=u

(d) To every vector u € V(IE;) there exists a vector —u (a so called opposite vector
to u) so that
u + (-u) = o.

Due to property (a), V(IE,) is said to be closed with respect to the two operations
“addition of vectors” and “multiplication of vectors by real numbers”.

Analogously, it is possible to define V(IE3) (or even V(IE,)) and operations
“addition of vectors” and “multiplication of vectors by real numbers” in this set.
These operations in V(IE3) (or in V(IE,)) also have properties (a) — (d).

I.1.3. Vector spaces. It can easily be verified that the operations “addition” and
“multiplication by real numbers” in the n-dimensional arithmetic space IR® have
properties (a) - (d), too. Thus, the sets R®, V(IE;), V(IE3) and V(IE,) are in
a certain sense similar. Generally, it can be observed that various nonempty sets
with the operations “addition” and “multiplication by real numbers” (which satisfy
conditions (a) — (d)) appear very often in mathematics and its applications. All these
sets are called vector spaces.

Elements of concrete vector spaces need not always be classical vectors as is the
case in V(IE;) and in V(IE;3). As examples of further vector spaces, we can mention:

— the set of all polynomials whose degree is less than or equal to n (i.e. functions
that have the form f(z) = ap + a1z +... + a,z"™, where ag, a1,..., an are
real numbers),

- the set of all functions defined by the equation f(z) = ao + a1-sin z + ap-cos z,
where ag, a1, ag are real numbers, '

— the set of all sequences of real numbers, etc.

Try to suggest for yourself how it is possible to define the operations “addition”
and “multiplication by real numbers” in these spaces so that the operations have
properties (a) - (d).

Let us return to the vector space V(IEz). Two vectors u = (uy, u2), v = (v1,v2)
from V(IE;) are equal if and only if the corresponding coordinates are equal, i.e.
Uy = vy, ug = v This simple assertion follows immediately from properties (a) -
(d) from paragraph I.1.2. Analogous assertions also hold in V(IE3) and IR™.

We are going to study a general vector space V in the next part of this chapter.
If the approach seems to be too abstract for you, you can imagine that V coincides
for instance with V(IE;), V(IE3) or V(IE,). Elements of V will also be called vectors
and they will be denoted in the same way as elements of V(IEz) or V(IEs3), i.e. by
small boldface letters. The zero vector will again be denoted by o.

1.1.4. Theorem (uniqueness of the zero vector). There exists only one zero
vector in the vector space V.

Proof: Suppose that there are two different zero vectors o and o' in V. Using
property (c) from paragraph 1.1.2, we get: 0 = 0+ 0’ = o'+ 0 = o'. Thisisin
contradiction with the assumption that the vectors o and o’ are different. Hence two
different zero vectors in the vector space V cannot exist.
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1.1.5. Theorem. For any vector u € V and any real number «, it holds
1) 0-u = o, 2) (-1)-u=-u,

(We do not show the proof of this theorem here. Nevertheless, it could be easily
made by means of conditions (a) - (d) from L.1.2.)

3) a0 = o.

1.1.6. Linear dependence and independence of vectors. If uy, up,..., u, is
a group of vectors in the vector space V and @, 3,..., an are real numbers then
the vector
aju; + azuz + ... + azl,

is called the linear combination of the vectors uj, us,..., u,. (The linear combina-
tion of vectors from V is a vector that also belongs to V. It is an easy consequence
of point (a) from paragraph 1.1.2.)

The group of vectors uy, ug,..., u, is called lnearly dependent if there exist
coefficients aj, as, ..., a, such that at least one of them is different from zero and

aiu; + azug + ... + azgu, = O.
A group of vectors which is not linearly dependent is called linearly independent.

1.1.7. Theorem. If one of the vectors u;, ug,..., U, in the vector space V is
equal to the zero vector then the group ui, ua,..., U, is linearly dependent.

Proof: Letfor instance uy =o. Then 1-u;+0-u3+...+0-u, =o0. So
we have the linear combination of the vectors uy, ug,..., u, which is equal to the
zero vector o and not all coefficients in this linear combination are zeros. Thus, in
accordance-with definition I.1.6, the group uy, ug,..., U, is linearly dependent.

1.1.8. Theorem. The group of vectors uy, uy,..., u, (where n > 1) from the
vector space V is linearly dependent if and only if at least one vector from this group
can be expressed as a linear combination of the other vectors of the group.

Proof: a)Suppose that the group uy, uy,..., u, is linearly dependent. Then
there exist coefficients i, ag,..., @, (such that at least one of them is different
from zero — let it be for instance a;) and a@ju; + aguz +... + azu, = 0. Since
ay # 0, we can divide the equality by oy and express u;:

Wow gy s By By,

(251 231 )

So the vector u; is a linear combination of the other vectors of the group. Similarly,
if a3 # 0 then it is possible to express u; in the form of a linear combination of the
other vectors of the group, etc.
b) Suppose now that for example the vector u; is a linear combination of the other
vectors, i.e. there exist coefficients Ba,...,[8n such that u; = Baug + ...+ fatin.
If we put @y = -1, az = B, ..., an = By then we can see that at least one of
these numbers is nonzero and aju; + asuz + ... + a,u, = o. Hence the group
u, Usg,..., U, is linearly dependent.

1.1.9. Theorem. The group of vectors uy, ug,..., U, from the vector space V is
linearly independent if and only if the vector equation
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(LL1) aiuy + @tz + ... + app =0

(for unknowns «, as, ..., &) has only the zero solution ay =0, ..., an =0.

(This theorem is an immediate consequence of the definition of linear dependence
and linear independence of vectors from paragraph 1.1.6.)

1.1.10. Example. The group of vectors (1,1,0), (0,2,3) a (3,5,3) in IE;3 is linearly
dependent. Equation (I.1.1), which in our concrete case has the form

a;-(1,1,0) + a2-(0,2,3) + a3+ 5,3,5) = (0,0,0),

has for instance this nonzero solution: a; = 3, @z = 1, a3 = —1. Linear dependence
of the given group of vectors follows now from theorem I.1.9.

L.1.11. Theorem. Let u;, ug,...,u, be a linearly dependent group of vectors
from the vector space V. Then every group of vectors from V which contains the
vectors uy, Ug,... , Uy, is also linearly dependent.

Proof: The group uy, uy,..., u, is linearly dependent, hence there exist
coefficients oy, @a, ..., an such that at least one of them is different from zero and
aju; + agug + ...+ azu, = o. .Let vy, va,..., vin be a group of vectors which
contains the vectors u;, ug,..., u,. Suppose that the vectors vi, va,..., Vp, are
ordered so that v; = u;, vg = uy, ..., v =U,. Then oqyvi+agva+...+apva +
0:vpg1+...+0: vy = 0. The coefficients ay, az,..., an, 0,..., 0 are surely not
all equal to zero. So the group vy, va,..., Vi, is linearly dependent.

1.1.12. Dimension of a vector space. Let n be a natural number. We say that
the vector space V is n—dimensional (or equivalently: its dimension is equal to n -
we write dim V = n) if

a) there exists a group of n vectors in V which is linearly independent,
b) each group of more than n.vectors from V is linearly dependent.

1.1.13. Basis of a vector space. Let V be an n-dimensional vector space. Each
linearly independent group of n vectors from V is called a basis of the space V.

1.1.14. Remark. The dimension of vector space V equals the maximum number
of linearly independent vectors that can be found in V. It also equals the number of
vectors in an arbitrary basis of V.

1.1.15. Theorem. Let u;, ug,..., u, be a basis of the vector space V. Then
every vector from V can be uniquely expressed as a linear combination of the vectors
ug, Uzy..., Uy

Proof: a)Existence of the expression: Let v be an arbitrarily chosen vector
from V. The group of vectors uy, ug,..., Uy, v is linearly dependent (because it is
the group of more than n vectors). Hence there exist coefficients ay, a3,..., an, 8
such that not all of them are equal to zero and

aju; + agus + ... + agu, + v = o.
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If B were equal to zero then the above equfa.lity would imply the linear dependence

of the vectors uy, uz..., u,, which would be in contradiction with the assumptions
of the theorem. So f is different from zero and it is possible to express v:
(3} [+ 7] Qg
V=E——u — —Uz — ... — —U,.
BB B
b) Uniqueness of the expression: Suppose that v can be also written in another way
as the linear combination of the vectors uj, ug,..., Uy: v =cju;+cuz+...+cyuy,.
If we subtract the first expression of v from the second one, we obtain:
a a Q
o= (a+=)wu+ (@+2)w+...+ (ot ).
B B B
The linear independence of the vectors uj, ug,..., u, implies: ¢; + a;/8 = 0,
ca+ag/f=0,...,cn+an/B=0. Sowe get equalities ¢; = —a1/f, e3 = —a2/B,
.4y Cp = —@y /B, which show that both expressions of the vector v are same.

1.1.16. Remark. Theorem [.1.15. can be “reversed”. We mean by this that one
can also prove correctness of the inverse implication: If V is a vector space and
uj, uy,..., Uy, is a group of vectors with the property that each vector from V can
be uniquely expressed as a linear combination of the vectors u,, ug,..., u, then
these vectors form a basis of the space V.

1.1.17. Example. The vectors i = (1,0,0), j = (0,1,0), k = (0,0,1) form the
basis of the vector space V(IE3) because each vector a = (a1, az,a3) € V(IE3) can be
uniquely written as a linear combination of the vectors i, j, k: a =a,-(1,0,0)+az-
(0,1,0) + a3 - (0,0,1) . Taking also into account remark 1.1.14, we come to the by no
means surprising assertion that the space V(IE3) is three-dimensional.

Analogously, the arithmetic vectors e; = [1,0,...,0], e2 =[0,1,...,0],..., e, =
[0,0,...,1] form the basis of the space R™ (so this space was correctly called n—
dimensional in paragraph 1.1.1).

1.1.18. Remark. The basis of a vector space is not unique! For example — you
can easily verify that two groups of vectors i = (1,0), j=(0,1) and u = (2,-1), v=
(1,1) are both bases of the vector space V(IE;). Moreover, every vector space (with
the exception of a so called trivial vector space, which contains only one element -
the zero vector) has infinitely many various bases.

If V is an n-dimensional vector space and uy, ug,..., u; (where j < n) is a
linearly independent group of vectors in V then this group can always be filled up to
the basis of V by adding appropriate vectors from V.

I.1.19. Subspace of a vector space. Suppose that W is a subset of vector space

V. If W is the vector space (with the same operations “addition” and “multi-
plication by real numbers” as in V) then we call W the subspace of the vector
space V.

1.1.20. How to recognize a subspace. Let W be a subset of vector space V.
We wish to find out whether W is a subspace of V. The operations “addition”
and “multiplication by real numbers” are defined in W because these operations
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are defined in V and W C V. Thus, W is an individual vector space itself (and
consequently, it is the subspace of V) if it is closed with respect to these operations.
This means if the sum of two arbitrary vectors from W remains in W and the
A-multiple of an arbitrary vector from W also remains in W (for any A € R).

L.1.21. Example. The set of all arithmetic vectors which can be written in the
form [a, B, 0] (where e, 8 are real numbers) is the subspace of IR3.

The set of all arithmetic vectors which have the form [a, B, 4] (where o, 8, v
are real numbers and a > 0) is not the subspace of IR3. '

1.1.22.* Remark. Try to prove these simple assertions:

a) If uy, uy,...,u, is a group of vectors from vector space V then the set of all
linear combinations of the vectors wu;, uy,..., u; is a subspace of the space V.
(This subspace is called the linear hull of the vectors uy, ..., ug.)

b) If the group of vectors wuy, ..., u is linearly independent then it forms a basis
of its linear hull and the dimension of the hull is thus equal to k.

1.2. Matrices and determinants

I.2.1. Matrices. A rectangular array of m - n real numbers written in m rows
and n columns is called a matriz of the type m x n (read m by n) or shortly an
m X n matrix. The numbers which are contained in the matrix are called its entries
or its elements. Matrices are usually denoted by capital letters and their entries are
denoted by the same small letters with two indices. The indices are related to the
position of the entry. For example, a;; denotes the entry in the i-th row and j-th
column in matrix A.

1.2.2. Example.
G11, G12, ..., Qi ;i Bee ol a8 B

@21, Q22, <y G2n 1 T e et Sn e I et

o Fu=B il B ol 28

Am1y OGm2y -+, Omn

A is the m X n matrix, B is the 3 x 6 matrix. If the type of matrix A is known, then
A can be written down in a shorter way: A = (ay;).

I.2.3. Identity of two matrices. Two matrices are identical if they are of the
same type and if they have the same entries at corresponding positions.

I.2.4. Main diagonal, upper triangular matrix, zero matrix, transposed
matrix. Suppose that A = (ay;) is an m x n matrix.

The entries a13, aza, ... form a so called main diagonal in matrix A.
If all entries under the main diagonal are equal to zero, then matrix A is called

the upper triangular matriz.
A matrix whose all entries are equal to zero is called a zero matriz.
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The n x m matrix B = (b;;) whose entries satisfy b;; = aj (i =1,...,n; j =
1,...,m) is called a transposed matriz to matrix A. It is denoted by AT. (The lst
column of matrix AT is identical with the 1st row of matrix A, the 2nd column of
AT is equal to the 2nd row of A, etc. In other words: the transposed matrix to
matrix A can be obtained by turning A over the main diagonal.)

1.2.5. Square matrix, identity matrix. A matrix with the same number of rows
as columns is said to be a square matriz.

A square matrix all of whose entries on the main diagonal equal 1 and all of
whose other entries are zeros is called the identity matriz. It is denoted by E.

I.2.6. Addition of matrices. If the matrices A = (a;;) and B = (b;;) are both
m x n then their sum is the m x n matrix C' = (c;;) with the entries c¢;; = a; + by;
(i=1,...,m; j=1,...,n). We use the notation C = A + B.

1.2.7. Multiplication of matrices by real numbers. If A = (a;;) is an m x n
matrix and A € IR, then the product of the number A and matriz A (or in other
words the A-multiple of matriz A) is the matrix C' = (¢;;) of the same type m x n
with the entries ¢; = A-ay; (i=1,...,n; j=1,...,m). We use the notation
C=A-Aor C=AA

1.2.8. Example.

1,—3,2+1,2,2_2,-—1,4 2'1_2
4, -1, 3 -1, 3, -8/ \3 2 -5)° 4) 7 \8)"
1.2.9. Remark. Matrices of the same type can also be subtracted: The difference of
matrices A and B is the matrix C = A+ (~1)- B. We write: C=A- B.

I.2.10. Multiplication of matrices. If A = (a;;) is an m x n matrix and
B = (b;j) is an n x p matrix then the product of the matrices A and B is the m x p
matrix C = (c;;) whose entries satisfy: ¢ = ai1 - bij + @ia - baj + ... + Gin * bmj
(i=1,...,m; j=1,...,p). We write: C=A-B.

1.2.11. Remark. The definition of the multiplication of matrices seems to be
artificial at first sight and so we shall analyze it once more. It can be explained by
means of the following new notion:

If [uy, ug,..., un] and [vy, va,..., v, | are arithmetic vectors from IR™ then
the number uj-v; +uz-v2+...+u, v, is called their scalar product.

The rows of matrix A can be identified with arithmetic vectors from IR™ (the
number of rows is m, and each of them has n entries). Similarly, we can regard the
columns of matrix B as arithmetic vectors also from IR" (their number is p, and each
of them has n entries). If you read definition 1.2.10 carefully, you can observe that
the entry c;; in matrix C is the scalar product of the i-th row of matrix A with
the j—th column of matrix B.

Matrices A and B can be multiplied (in this order) only if matrix A has the
same number of columns as the number of rows of matrix B. We can easily recognize
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whether this is fulfilled: we write down the types of matrices A and B (for example
m X n, n X p) and the 2nd and 3rd number must be the same. Otherwise matrices
A and B cannot be multiplied (in this order).

1.2.12. Example. Verify for yourself by calculation that it holds:

3, 2, 5 1, 5 -1, 11 3, 5 3 19
2, -4, 6]+ 3 -=2]=1(-22, 18}, 6, -2 ( 2) =1 14
1, 0, 0 -2, 0 1, 5 -1, 0 -3

1.2.13. Rules for operations with matrices. Suppose that A, B and C are
matrices and «, 8 are real numbers. Then each of the equalities

a) A+ B=B+ A, b) (A+B)+C=A+(B+C),

¢c) a-(A+B)=a-A+a-B, d) (a+B8)-A=a-A+B-A,

e) A-(B+C)=A-B+A-C, f) (A-B)-C=A-(B-C),

g) A-E=A, h) E-B=B,

i) (A+B)T = AT + BT, j) (A-B)T=BT.4AT

holds if the types of matrices are such that the operations on the left hand sides have

a sense. Try to prove equalities a) — j) for yourself under this assumption.
Multiplication of matrices is not commutative, i.e. it does not generally hold

that A- B = B+ A! If, for example, A is a 3 x 5 matrix and B is a 5 x 7 matrix then

the product A B is a 3 X 7 matrix, while the product B A has no sense, it cannot be

created. Moreover, even if both products A- B and B - A have a sense, there exist
examples when A- B # B - A.

1.2.14. The rank of a matrix. The maximum number of linearly independent
rows of matrix A (taken as arithmetic vectors) is called the rank of matrix A. We
denote it r(A).

1.2.15. Example. Let: 2, 1, 5\
e e o ) Ve e

4, -3, 1
For instance — it can be verified by means of theorem 1.1.9 that the first two rows of
the matrix are linearly independent. The third row is the linear combination of the
first two rows (it is equal to the difference of the 1st row (multiplied by 3) and the 2nd
row (multiplied by 2)). Hence all three rows form the linearly dependent group. The
maximum number of linearly independent rows is two, and for this reason r(A) = 2.

1.2.16. Remark. It is natural to put the question whether it is possible to define
the rank of a matrix by means of its columns instead of its rows (i.e. as the maximum
number of linearly independent columns, if the columns are identified with arithmetic
vectors). The answer is simple: YES. The “row definition” and the “column defini-
tion” assign to the matrix the same number as its rank. However, we should mention
that the exact proof of this assertion is not quite simple.

If we deal with more complicated matrices than matrix A from example 1.2.15,
we are not able to recognize at first sight which rows form a linearly independent
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group and conversely, which ones are linear combinations of other rows. That is why
we shall study the problem of how to specify the rank of a matrix in greater detail
in several following paragraphs.

1.2.17. Theorem. Let A be an m X n upper triangular matrix and let all entries
on the main diagonal be different from zero. Then the rank of A is equal to the
minimum of the numbers m, n.

1.2.18. Example. Instead of showing a general proof of theorem I1.2.17, let us
study this special case: Suppose that 3, 3 5 0 -3, 8
A=1(0 1, 7, -6, 4, 3
0, 0, 5 14, 4, 2
Let us verify that the rows of matrix A are linearly independent. We can write the
vector equation

a-(3,3,5,0,-3,8) + 8-(0,1,7,-6,4,3) + v-(0,0,5,14,4,2) = (0,0,0,0,0,0).

If we write down the corresponding equations for all coordinates, we obtain a system -

of six linear algebraic equations for three unknowns: a, 8 and . We can easily find
that there exists only one solution: @ = 8 = 4 = 0. The linear independence of
the rows of matrix A now follows from theorem I1.1.9. Their number is three, hence
r(A) = 3. By analogy, the matrices

1.8 =2 -2, 3 0, 5 2, 1 5\ (1, 2, -5, 8)
I e T 0, 4/)' [0
0,0 5 )'lo o 15 1) 0
0, 0, 0 0o 0, 0 7 0

have the ranks 3, 4, 2, 1, 1.

1.2.19. Elementary row and column operations. If we have to find the rank of
a general matrix A which is not triangular, then we can transform the matrix to an
upper triangular matrix (with non—zero entries on the main diagonal) using so called
elementary row and column operations, which do not change the rank of the matrix,
and afterwards we specify the rank by means of theorem 1.2.17. We shall use the
following elementary row operations:

a) change of order of rows,

b) multiplication of some row by a nonzero number,

c) addition to some row of a linear combination of the other rows (specially, addition
of a multiple of another row),

d) omission of a row which is a linear combination of the other rows (specially,
omission of a row all of whose entries are zeros or omission of a row which is a
multiple of another row).

(All the operations can also be performed with columns. We are not going to prove

that these row and column operations do not change the rank of a matrix.)

The procedure of transformation of an arbitrary matrix to an upper triangular
matrix (all of whose entries on the main diagonal are different from zero) by means
of the elementary row and column operations is called the Gauss algorithm. The
algorithm is explained in the next example:
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1.2.20. Example. We find the rank of the matrix 2, -1, 1, 8, 2
A% -3 8 1, 7
~ 18 -6, 8 12, 12

6, —4, 6, 9, 9

Step 1. Since ay; # 0, we rewrite the 1st row. (If @33 = 0 then we interchange the
rows or columns so that there is a nonzero entry on the position 1,1.) Now
we want to get only zeros under the entry a;;. That is why we first multiply
the 1st row by 2 and subtract it from the 2nd row, then we multiply the 1st
row by 4 and subtract it from the 3rd row and finally, we multiply the 1st
row by 3 and subtract it from the 4th row. We obtain the matrix:

2, -1, 1, 8, 2
0, -1, 3, —15, 3
0, -2, 4, —20, 4
0, -1, 3, -15 3

Step 2. We rewrite the 1st row. Since the entry at position 2,2 is nonzero, we also
rewrite the 2nd row. Now we want to get only zeros under the entry at
position 2,2. Thus, we multiply the 2nd row by 2 and subtract from the 3rd
row. Finally, we subtract the 2nd row from the 4th row. We get the matrix:

2, -1, 1, 8 2

B a4 o1k 8
s fe e
8 K B % &

Step 3. The last row contains only zeros, hence we omit it. We obtain the upper
triangular matrix:
(2, -1, 1, 8, 2
0, -1, 3, -15 3.
0, 0, 2, -36 0
Due to theorem I1.2.17, the last matrix has the rank 3. Thus, r(4) = 3.

1.2.21. Determinant. Let A be a square matrix. The determinant of matrix
A is the number which is denoted by det A and which is assigned to matrix A in
accordance with these rules: .

a) If A= (a)is a 1 x 1 square matrix then det A = a.

b) If A = (aij) is an n X n square matrix (for n > 1) then we choose an arbitrary
row of A (let us denote this row as the i-th one) and we put

(1.2.1) det A = ajy - Aiy + aig- Aip + ... + Gin - Ai

where A;; is a so called co—factor of the entry a;;. The co—factor is equal to
(=1)". Aj; where A}; is the determinant of the (n — 1) x (n — 1) square matrix
which arises from A by omission the i~th row and the j—th column. (A}; is called

the minor, which is the abbreviation for “minor determinant”.)

1.2.22. Remark. The sum on the right side of (I.2.1) is called the expansion of the
determinant according to the i—th row. It can be proved that the choice of the row
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according to which the determinant is expanded is not important because the result
is always the same. The determinant can even be expanded according to an arbitrary
column. The expansion of the determinant according to the j-th column is:

detA = al,--Au- + az_,--Az,- + ..o+ auj-A,,j.

It can be easily verified that the determinant of a 2 X 2 square matrix A is:

det A = @11 G232 — a12042]1.

Remember this simple formula!

The expansion of the n x n determinant according to some row or column leads to
the expression of this determinant by means of n (n—1) x (n—1) determinants. Each of
these determinants can be further expanded according to some of its rows or columns
and so the problem is transformed to a question of calculation of (n —2) x (n — 2)
determinants. We can proceed in this way until we come to 2 x 2 determinants (or
even 1 x 1 determinants) which we already know how to compute.

1.2.23. Remark. The determinant of matrix A is often written down analogously
as matrix A, only instead of round brackets we use straight vertical lines.

1.2.24. Saruss’ rule. The determinant of a 3 x 3 matrix can also be, apart from
the expansion according to some row or column, computed by the so called “Saruss’
rule”:
det A = aj1-azz- a3z + a12°G23- Q31 + G13° 021 * A3z —
— @13 Gz aG31 — G11 ‘423" G32 — 412 421 " @33.

The correctness of this formula can be verified by comparison with the result that
can be obtained by expansion according to some row or column. You can easily
remember the formula by means of the following scheme:

~

™ |au, @12, a3

™~ |a21, a2, a3

asi, 0G32, as3

~
-~
~
/ ayy, G12, a3 \ :
_;\‘ / ag, G2, G23 \ N
" / \ I

1.2.25. Problems. Verify that

4, 2, 5 0
a)|2, 5| __, b4 8 3 )2, -1, 0, 2
.1 : 5, -1, 0|[= 215, 3 6 -8 2= %L
s B e g Ry

To compute the last determinant, it is advantageous to use the expansion according
to the 3rd column. (Why?)

1.2.26. Geometrical meaning of the determinant. a) Suppose at first that A
is a 2 X 2 square matrix. We can consider its rows to be the vectors a; and as. Let
us fill in these two vectors to the parallelogram in plane IE2. You can verify by an
easy calculation that the area of the parallelogram is equal to |det A|.
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b) Assume now that A is a 3 x 3 square matrix whose rows are the vectors a;, a; and
a3. Let us fill in these vectors to the parallelogram in space IEs. Then the volume of
the parallelogram is equal to |det A|.
¢) Generally, let A be an n X n square matrix whose rows are the vectors ay, ...,
a,. Let us fill in these vectors to the n—dimensional parallelogram in IE,,. Then the
n~dimensional volume of the parallelogram is |det A|.

Assertions a), b) and c) remain valid if we work with the columns of matrix A
instead of its rows.

1.2.27. Important facts about determinants. Knowledge of the following
assertions is very useful for computing determinants. Assume that A isann xn
square matrix (where n > 1).

a) If all entries in some row (or column) of 4 are zero then det A =0. (This is
seen if we expand the determinant according to the zero row or column.)
b) det A = det AT

¢) Interchanging two rows (or columns) changes the sign of the determinant.

d) If two rows (or columns) are identical, the determinant is zero. (This is the
consequence of item ¢): Interchanging two same columns changes the sign of the
determinant. However, the new matrix is identical with A, so its determinant is
equal to det A. The equality —det A = det A implies that det A =0.)

e) If we multiply some row (or column) of matrix A by a number A then the de-

terminant of the n rix i al to A - det A. (This can be easily proved by
expanding the determinant according to the multiplied row or column.)
f) row _(respectively colu of A is a multiple of another row (respectivel

column] of A, the determinant of A is zero. (This is an easy consequence of
items d) and e).)

g) If any row (respectively column) of A is a linear combination of the other rows
(respectively columns) of A, the determinant is zero. (We can prove this if we

expand the determinant according to that row (respectively column) which is
the linear combination of the other rows (respectively columns) and apply the
assertions from the items d) and e).)

h) If A and B are n x n square matrices then det (A- B) = det A - det B.

1.2.28. Remark. The determinant of the n x n identity matrix (for arbitrary
n € IN) is equal to 1.

More generally: The determinant of a square upper triangular matrix is equal
to the product of all entries on the main diagonal. Try to verify for yourself that
this simple assertion is true.

(The expression “square upper triangular matrix” sounds rather strange, how-
ever when you read carefully the definition of a square and of an upper triangular
matrix, you can see that the adjectives “square” and “upper triangular” are not in
contradiction.)

The determinant of an n x n matrix was defined in paragraph 1.2.21 by means of
the expansion according to some row (or column). Determinants of “smaller” matri-
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ces can really be calculated by means of these expansions. However, the calculation
of determinants of “larger” matrices by means of the expansions according to rows
or columns would require an extremely large number of operations. (For instance, in
the case of a 100 x 100 matrix, no modern computer would be able to do it in the
epoch of existence of our universe.) Such determinants can be calculated by other
(so called numerical) methods. For example: Applying the operations from item h)
of paragraph 1.2.27, the determinant can be transformed to the determinant of an
upper triangular matrix. Then the assertion from the first part of this paragraph can
be applied.

1.2.29. Regular and singular matrices. An n x n square matrix which has the
maximum possible rank (i.e. n) is called a reqular matriz.
A square matrix which is not regular is called singular.

1.2.30. Inverse matrix. Suppose that A is an n X n square matrix and E is the
n X n identity matrix. An n x n matrix A~! is called the inverse matriz to matrix A

if A-A-' = E.

You will see in the following paragraphs that the inverse matrix A~! need not
exist to each square matrix A!

1.2.31. Theorem. Let A be a square matrix. Then the following statements are
equivalent:

a) A is regular.

b) detA#0.

¢) The inverse matrix A~ exists.

(We omit the proof of this theorem. The theorem states, among other things, when
the inverse matrix does exist.)

1.2.32. Theorem. If A and B are n X n regular matrices then matrix A - B is also
regular. Moreover, it holds: (A-B)™'=B"1.47%

Proof: Matrices A and B are regular, hence their determinants are different from
zero. (See theorem 1.2.31.) Assertion 1.2.27 h) implies: det (A B) = det A - det B,
which is different from zero. Using theorem 1.2.31, we can see that matrix A- B is
regular. The formula for (A- B)~! follows from the equalities (A-B)-(B~1-A71) =
A-(B-BY).A1'=A.-E-A'=A-A"'=E.

1.2.33. Theorem. Ifmatrix A is regular then matrix A~* is also regular. Moreover,
it holds:
a) (A™H)7! = 4, b) A-Al=A1.A=E.

Proof: a) If matrix A~! were singular, it would be 1=det E =det(A-A"1) =
det A-det A~ = det A-0 = 0, which is impossible. Hence A~! is regular. Further,
onehas: (A™1)"'=(4-A7) (A" ) 1=A4A.[A (A" ) )=A-E=A

b) The formula A-A~! = E is already known. It remains to show that it also holds
A-'. A = E. Denote B = A~!. Obviously, one has: A~!-A=B.(A"Y) ! =
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'B-B'=E.

1.2.34., Theorem (uniqueness of the inverse matrix). If a square matrix A
has an inverse matrix then the inverse matrix is unique.

Proof: Suppose that both A;l and A;II ‘are the inverse matrices to matrix A.
Then we have:

a) A7l A-Ap}=(A7'-A)- A7} =E- A7} = A7},

b) A;'-A-Afl =A7 - (A-A7)=A;t-E= AL

This means that A;'l = A}"Il. Thus, the inverse matrix (if it exists) is unique.

1.2.35. Remark. A practical question is how to compute the inverse matrix A~}
to a given regular square matrix A. For instance, it can be proved that

T
1 Alla sy Aln

det A

A"l = : :
Anh 1eey Anu

where A;; are co—factors of the entries a;; in matrix A (see paragraph 1.2.21, item c).
However, the practical application of this formula for larger n is not advantageous,
due to the necessity to compute the co—factors A;;, which can be very laborious.

There exists a less laborious procedure, based on the same idea as the Gauss algorithm
described in 1.2.20. It is explained in example 159, pp. 9-10, in the textbook [NK].

1.3. Systems of linear algebraic equations

1.3.1. Basic notions. The system of equations

a1 + ai2: + ... + GnTn = b
G21°%1 + @2-T3 + ... + Gxp'ZTn = by
(1.3.1) 5
Gm1'ZT1 + Gm2'T2 + ... + Gun'Tn = bnm
(where @11, a12, ..., Gmn, b1, b2, ..., by are given real numbers and z,, z3, ..., Zn
are unknowns) is called the system of linear algebraic eguations. The matrices
a1, @12, ..., Gin ay, @iz, ..., G | b
@z1, G22, .-y G2n az1, @2, ..., G2n |b2
A= . ) (A|B)= . .
@m1, Gm2, -+ Omn Qmly Gm2y, +++y Omn bin

are called the matriz of the system (1.3.1) and the gugmented matriz of the system
(1.3.1). If we further denote

z by

T b
x=|"72], B=| 11,

Tn b

17



we can write the system (I.3.1) in the much shorter way:
(I.3.1) A-X = B.

A solution of the system (1.3.1) is every ordered n—tuple of real numbers z;, z3,
., T, which satisfies the system. Solutions of the system can also be regarded as
arithmetic vectors, i.e. as elements of IR". We believe that no misunderstanding can
arise if the solution taken as an arithmetic vector is denoted in the same way as the
solution taken as an n x 1 matrix (i.e. for example by X in both cases).
If all the numbers by, b, ..., by, are equal to zero, then the system (1.3.1) is
called homogeneous. In the opposite case, system (1.3.1) is called non-homogeneous.
The homogeneous system can be shortly written as the matrix equation

(13.2) A:X = 0.

where O is the m x 1 zero matrix.

A non-homogeneous system need not always have a solution. (Example: z; +
T9 =1, z1+T = 2) On the other hand, an homogeneous system always has at least
one (zero) solution z, = ... = £, = 0 (this solution is called the trivial solution). Of
course, in some cases it also has other, non—zero (= non-trivial) solutions.

Two systems of equations are called equivalent if they have identical sets of
solutions.

Our next task is to learn to find all solutions of the system (I.3.1) and to study
the structure of the set of all solutions of the system (I.3.1) (or (1.3.2)).

1.3.2. Gaussian elimination. This method can be used to solve the system (1.3.1).
You will study it in detail in the exercises. However, here are the basic steps:

Step 1. Write down the augmented matrix of the system. The matrix can be trans-
formed to an upper triangular one by means of elementary operations de-
scribed in items a) — d) in paragraph 1.2.19 and in example 1.2.20. If possible,
avoid interchanges of columns - they correspond to interchanges in the order
of unknowns and they are often sources of mistakes for beginners. If you
cannot avoid interchanges of columns, then you should write the unknowns
above the column which contains coefficients standing at this unknown. The
(n+1)-th column cannot be interchanged with any other one because it con-
tains right hand sides of the equations in the system (I.3.1). Nevertheless,
in what follows we suppose that interchanges of columns were not necessary.

Step 2. Write down the system of equations which corresponds to the last matrix.
(It is equivalent to the original system we have to solve.) This system can be
successively solved from the last to the first equation. Each of the equations
can be regarded as the equation for one unknown only — that unknown with
the lowest index.

2a) If the last equation has the form c,z, =+ (where ¢, # 0) then one can use
it to express z,, and substituting its value to the preceding equation, one
can get r,_1, etc.

2b) 1If the last equation has the form 0=+ (where 7 # 0) then the system has
no solution.
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2¢) Ifthe last equation has the form exZTk + Ck41Zk4+1+- ..+ Cnn =y (Where
¢k # 0) then Zg41, Tk+2, ... , Tn can be put equal to parameters which can
be dgnoted for example by p1, p2, ..., Pn—k. We can express ry from this
equation. Substituting for zx, Zx+1, ..., Zn to the preceding equation, we can
use it to get zx_1, etc. The system has now infinitely many solutions. Con-
crete solutions can be obtained by a concrete choice of values of parameters

D1, P2y ovo s Pn—k-

1.3.3. Remark. Let us first study the homogeneous system (I1.3.2). It is obvi-
ous that if we solve it by Gaussian elimination, case 2b) cannot appear. (The last
column of the augmented matrix contains only zeros, and row operations a) — d)
from paragraph 1.2.19 cannot affect it. That is also why it is sufficient to work only
with the matrix of the system. The augmented matrix is not necessary.) Thus, the
homogeneous system is always solvable — it has the unique, trivial, solution in case
2a) or infinitely many solutions in case 2¢). The following theorem gives important
information on the structure of the set of all solutions of the system (I.3.2).

1.3.4. Theorem. The set of all solutions of the homogeneous system (1.3.2) is
& subspace of the n—dimensional arithmetic space IR"® whose dimension is equal to
n - r(A).

Proof: Let usfirst show that the set of all solutions of the system (1.3.2) is a
vector space which is a subspace of IR”. If X and Y are solutions of (I.3.2) then it
holds: A-(X+Y)=A-X+A.Y=0+0=0, ie. X+Y alsois a solution of
the system (1.3.2). Similarly, if X is a solution of (1.3.2) and A is a real number then
A (AX)=A-(A-X)=X-0=0, ie. A-X also is a solution of (1.3.2). The set of
all solutions of the homogeneous system (I.3.2) is a subset of IR™ because its every
element belongs to IR™ and it is closed with respect to the operations “addition” and
“multiplication by real numbers”. Therefore it is a subspace of IR".

The assertion on the dimension of the subspace follows from theorem 1.2.17 and
from the procedure described in paragraph 1.3.2. (The dimension is equal to the
number of parameters py, pa, ... , Pn—k in paragraph 1.3.2 - think over this fact for
yourself.)

1.3.5. Example. Let us solve the system ;3 + x2 — 373
5y, — 213 — 8z3
3z, - @ - ima

Itn

The matrix of the system is transformed in accordance with instructions from para-
graphs 1.3.2 and 1.2.19:

1y ol =8 , 1, -3 5, 1, -3 .1 i
5 -2, -8 ~ {0, =7, 7 ~ 10 -7, T ~ (0’ _,;, 7)
3, -4, -2 0, = T 000 g L
The system of equations corresponding to the last matrix is
T, + T2 - 3z3 = 0,
- Tzg + Tzz = 0.
19
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We put z3 = p (where p is a parameter). Then the second equation yields: z, = P
Substituting for x3 and z to the first equation, we obtain: z, = 2p. The solution can
be generally expressed: [z1, z2, 23] = [2p, p, p] = [2, 1, 1]p. Now it is obvious that
there exist infinitely many solutions and the set of all solutions forms a 1-dimensional
subspace of IR®, whose basis is the arithmetic vector [2, 1, 1). This corresponds to
the equality 1 = 3 — 2 (3 is the number of unknowns, 2 is the rank of the matrix of
the system) — see theorem 1.3.4.

L.3.6. Remark. If the rank of matrix 4 is equal to the number of unknowns (i.e.
k = n) then the set of all solutions of the homogeneous system (I.3.2) is the subspace
of IR™ of the dimension n — n, i.e. zero. This subspace contains only one element —
the zero element - that is the n-tuple of nothing but zeros. This is exactly the case
when the homogeneous system (1.3.2) has only the trivial solution.

Let us deal with the general (possibly non-homogeneous) system (1.3.1) again.
The next theorem gives information about how to recognize which of the cases 2a) -
2c) (see paragraph 1.3.2) occurs.

L3.7. Frobenius’ theorem. I. The system of linear algebraic equations (13.1)
(for n unknowns) has a solution if and only if r(A) =r(A|B).
I If r(A) =r(A|B)=n then the solution is unique.

If r(A)=r(A|B) <n then the system (I.3.1) has infinitely many solutions.

1.3.8.* Remark. Let us analyze in greater detail the last case, i.e. the situation

“when the ranks of the matrix and the augmented matrix of the system (L.3.1) are

both equal to k, where k < n. There is a natural question which is the structure of
the set of all solutions of (1.3.1). Theorem 1.3.4 states that the set of all solutions
of the corresponding homogeneous system (1.3.2) forms a vector space (a subspace
of R") of the dimension n — k. If X3, ... y» Xn—k i8 & basis of this subspace then
solutions of the homogeneous system (I.3.2) can generally be expressed in the form
X1+ ...+ cngXu_k. If some concrete, particular solution ¥ of the general
(possibly non-homogeneous) system (I.3.1) is known, then all solutions of the system
(I.3.1) can be expressed in the form:

(133) X = chl + ...+ Cn_kXﬂ,_k + Y.

This means that if ¢i, ..., cu—t can each run independently each of the others over
the set of all real numbers, then X runs over the set of all solutions of the system
(L3.1). This is why X is often called the general solution of the system (1.3.1).

L3.9. Cramer’s rule. Let us now deal with the special case when system (1.3.1)
is a system of n equations for n unknowns. The matrix of the system is a square
matrix. Applying Frobenius’ theorem, one can easily obtain this important assertion:

If matrix A of the system of equations (L.3.1) is regular then the system has a
(Think over this fact and find for yourself reasons why this is true.) In this case,
apart from by Gaussian elimination, the solution can also be obtained by means of
the formulas
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_ A
A
where A =det A and A; is the determinant of the square matrix which arises from
matrix A interchanging the i—th column with the column of the right hand sides of
the equations in (1.3.1).

(To derive this formula, it is possible to use the matrix form of the sytefn: A-X _=1 B,
the consequent form of the solution: X = A~!-B and the expression of A~ by
means of the formula from paragraph 1.2.35.)

i

I.4.* Linear mappings of R" into R™

i . 2, 1, -3
I.4.1. Motivation. Suppose that A is the 2 x 3 matrix: A= (_1, 5 -1 ) :
The equations

(141) n o= 25y + =z - 3z3

Y2 = —T1 + OT3 — I3

define a mapping L : IR® — IR?. This mapping assigns to given X = [z, z2, %3] €
IR? the image ¥ = L(X) = [y1,42] € R%.

1.4.2. Linear mapping of R® into R™. A mapping L of t:he tl—dimens'ional
arithmetic space IR into the m-dimensional arithmetic space IR™ is said to be linear

if

a) L is homogeneous, i.e. L(a-X) = a-L(X) for all « € R and for all points
X € R" and

b) L is additive, i.e. L(X; + Xa) = L(X1) + L(X3) for all points X3, Xz € R™.

The linear mapping is also called the linear transformation or the linear operator.

1.4.3. Linear mapping defined by a matrix. Similarly as in example .1.4.1, one
can define a mapping L : R® — IR™ by means of a general m x n matrix A:

nn = anr + a2 + ... T  GinZa
(14.2) :

Ym = QGm1T1 T+ am2T2 + + GmnTn.

It will be a.dvantagéous to write the coordinates of points in IR™ in the form of an
n X 1 matrix in this section. Then

) n
x=[:]er, v=x)=|:|emm
T Ym

Equations (1.4.2) can be, in accordance with the rules on multiplication of matrices,
written in much simpler form as one matrix equation:

(1.4.3) Y=A4-X.

21



Since the mapping which is defined by thié equation is named L, we can also write:
Y =L(X)=A-X. Itis obvious that

La-X)=A-(a-X)=a-(4-X) = a- L(X)
and L(X14+X2)=A-(X1+X2) =A- X1+ A - Xo = L(X1) + L(Xa)

for all @ € R and for all points X, X;, X2 € R™. This means that the mapping L,
defined by equations (1.4.2) (or by the equivalent matrix equation (1.4.3)), is a linear
mapping of IR™ into IR™. We say that this mapping is defined by matriz A. On the
other hand, matrix A is said to be the matriz of linear mapping L.

1.4.4. One-to—one correspondence between linear mappings and matrices.
‘We have seen that each m xn matrix A defines a unique linear mapping L : R" —
IR™. It is natural to ask whether on the other hand every linear mapping of R" to
R™ defines a unique m xn matrix. The next theorem says that the answer is positive:

Theorem (on representation of a linear mapping by a matrix)., If L isa
linear mapping of IR™ into IR™ then there exists a unique m x n matrix A such that
L(X)=A-X forall X e R".

1.4.5. Remark. There exists the following discord in mathematical terminology:
The function y = kz +gq (where k, g are coefficients and z is variable) is called
“linear” in the mathematical discipline called mathematical analysis. However, look-
ing at this function from the point of view of linear algebra and regarding it as a
mapping of R! to IR! we can see that it is linear only if ¢ = 0. Otherwise it is neither
homogeneous nor additive (see paragraph I1.4.1).

1.4.6. Example. Linear mapping L of the space R™ to the space R™ is given by

the matrix Ao 2, 3, 1
2, -1, 2)/)°

Specify numbers n and m. Choose X in IR™ and find its image ¥ = L(X) in R™.

Solution: m is equal to the number of rows of matrix 4, i.e. m = 2. n is equal
to the number of columns of matrix A, i.e. n = 3. L is thus a linear mapping of R®
into IR2, 5

Let us choose X € IR3, for instance X = | 2 | . Then it holds:
1

, 8, 1) (3}
powty 2oL Rk

I.4.7. Example. Does there exist a linear mapping L of the space IR? into itself
such that L(X;) =Y; and L(X;) =Y2? Points X, ¥3, X2 and Y2 are:

(i) ne() 5o ne(3)

If such mapping exists, find its matrix.

B B

Y=L(X)=A-X=(

22

o RS

Solution: A linear mapping L with required properties exists if and only if there
exists a 2 x 2 matrix A = (a;;) such that ¥ = A-X; and Y3 = A-X,. Substituting
here the coordinates of the points X, Y7, X; and Y3, we obtain:

0 = 2a3; + a2 1 = —an - a2
1 = 2821 + a2 -2 = —az1 — Q2
This system for the unknowns @iy, @12, @21, a22 has a unique solution a3 = 1,
612 = —2, ag; = —1, ags = 3. Hence the linear mapping L exists, it is unique and
its matrix is 1. -2
A= !
(5 %)

1.4.8. Example — change of the basis in V(IE;), change of the coordinate
system in IE;. Let e;, e, e3 be a basis in the vector space V(IE3). Then, in
accordance with theorem 1.1.15, each vector x € V(IE3) can be uniquely expressed
in the form s
(1.4.4) X = T1€; +Tyep+T3€3 = Z zje;.
=1

Numbers z;, T3, z3 are said to be the coordinates of vector x with respect to the basis
ey, €2, €3.

If €}, e}, e} is another basis in V(IE3) then

s
(1.4.5) e; = ayje} +ayjey +agje; = Z a;j €]
=1

where a,;, as;, ag; are the coordinates of the vector e; with respect to the basis e},
e}, 5. If we substitute the expression (1.4.5) of e; to (1.4.4), we obtain:

3

3 3 3 3
d / U /o ’
x-—-’hE a;1€; + T3 E a.-ge‘-+a:3§ aize; = E E Tjaij €
j=1

i=1 i=1 i=1 =1

3 3
o (E “*‘;‘%‘) e =) 7€,
i i=1

3
i=l ‘=1
3
= Z O..'j Ij.
=1

Numbers z, x5, z} are the coordinates of vector x relative to the basis e}, e},
ej. We can see that the mapping which to each given [z1,z3,23] € R® assigns
(@}, x5, z45] € IR is a linear mapping of R? into itself, whose matrix is A = (a;;). A
is said to be the transition matriz from the basis e;, g, €3 to the basis e, e}, e}.

The result can also be interpreted in this way: The change of coordinates,
corresponding to the transition from an affine coordinate system z;, z3, z3 in IE3
(which can be Cartesian, but it is not a condition), whose coordinate axes are oriented
by vectors e;, e, €3, to a coordinate system zi, z4, =5 (which has the same origin,
however the coordinate axes are oriented by vectors €}, e}, e5) is a linear mapping.
Its matrix is matrix A.

In the special case when both the coordinate systems z1, T2, 3 and =}, 25, z3
are cartesian and they have the same origin, the element a;; in matrix A has this

(.7 =1,2, 3)1

where T

-
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geometrical meaning: a;; = cos o where ¢ is the angle between the nonnegative part
of the z{-axis and the nonnegative part of the z;-axis. (Le. a is the angle between
the vectors e} and e;.) This is why we often refer to numbers a;; as direction cosines
in this case.

1.4.9. The null space (the kernel) of a linear mapping. Let L be a linear
mapping of IR™ to IR™. The set of all points X € IR™ such that L(X) = O is called
the null space (or the kernel) of mapping L. We denote it N(L) (or Ker(L)).

We deal only with linear mappings L : R® — IR™ whose domain is the whole
space IR™ in this textbook. However, the range R(L) (= the image of IR") need not
generally cover the whole space IR™.

The following theorem gives the information about the structure of the null space
N(L) and the range R(L) of the linear mapping L.

1.4.10. Theorem. Let L be a linear mapping of R™ to R™. Then N(L) is a
subspace of R™ and R(L) is a subspace of R™.

The proof is simple. Think over it for yourself. (You can use paragraph 1.1.20.)

1.4.11. A composite mapping. If L; is a linear mapping of R™ to IR™ (given
by an m X n matrix A;) and Ly is a linear mapping of R™ to IR* (given by a k x m
matrix As) then one can create a composite mapping L = Lz o Ly of R" to R,
The following theorem tells us more about this mapping.

Theorem (on a composite mapping). Under the mentioned assumptions L is
a linear mapping of R™ to R* whose matrix is A = Ay - A;.

1.4.12. Example. Linear mappings L4 and Lp have the matrices

-1, 0
A= 5 3] and B=(g’ g)
-2, 6 !
Which of the two composite mappings LqoLp, Lo L4 can be created? Determine

the matrix of this composite mapping.

Solution: A is a 3 x 2 matrix, hence L4 is a mapping of R? into R3. B is a
2 x 2 matrix, therefore Lp is a mapping of IR? to IR?. This shows that the composite

mapping LaoLp (from IR? to IR®) has a sense, while the composite mapping LgoLy4

cannot be created. This is also seen from the fact that the matrix product A- B is
defined (the result is a 3 x 2 matrix), while the matrix product B+ A has no sense.

Matrix C of the composite mapping L4 o Lp can be computed in this way:

b & .4
O % B & 5,3.(g’g)= y
—2 6 , 18 -4

1.4.13. The inverse mapping. It generally holds that the inverse mapping L1
to mapping L exists if and only if L is one-to—one.

Let us now deal with the question when a linear mapping L is one-to—one and
what form has the inverse mapping L_; in the special case when the matrix of
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mapping I‘L is a square n X n matrix. L is thus a linear mapping of R" to IR". The
next theorem gives the important information.

Theorem (on the inverse mapping). Suppose that L is a linear mapping of R"™
to IR™ which is defined by an n x n matrix A. Then L is one-to—one if and only if
matrix A is regular. In this case, the inverse mappmg L_, is also a linear mapping
of R™ into itself. Its matrix is A~

1.4.14. Example. L is a linear mapping of R? to IR?, defined by the matrix
A= (3, 1)_ Does there exist an inverse mapping to L ?

0, 2 If the inverse mapping exists, find its matrix.
Solution: det A=3-2—-0:1=63% 0, hence matrix A is regular and the inverse
matrix A~! exists (see theorem 1.2.31). Thus, the inverse mapping L_,, also exists
and it is a linear mapping of IR to IRg. Its matrix is matrix A~1. The inverse matrix

can be obtained either by means of the formula from paragraph 1.2.35 or it can be
calculated by the method which is explained in the textbook [NK], pp. 9-10. We

show only the result:
A-1 = 1/3, -1/6
0, 1/2 )
1.4.15.* Remark. The inverse mapping can also exist to the linear mapping L :
IR® — IR™ in the case when m > n and the matrix of the mapping is therefore nor

a square matrix. Then the domain of the inverse mapping is not the whole space
IR™. However, we do not deal with such mappings in this text.

1.4.16.* Remark. Assume again that L is a linear mapping of IR™ to IR™ defined
by an m x n matrix A. It can be proved that the dimensions of the null space N(L)
and the range R(L) of mapping L satisfy the formulas
(L4.6) dim N(L) = n—r(4), dim R(L) = r(A).

Try to prove the following simple assertions for yourself.

a) The range R(L) of the linear mapping L covers the whole space R™ if and only
if its dimension is the same as the dimension of R™, i.e. if r(A) =

b) Linear mapping L is one-to—one if and only if dim N(L) = 0. (It is, due to the
first formula in (1.4.6), satisfied if and only if r(A) =n.)

1.4.17. Remark. We have in remind that V(IE,) is the vector space of all (free)
vectors from IE,,. If we make an agreement that the coordinates of vectors in V(IE,)

~and in V(EE,,) will be written as columns (i.e. as n x 1 or m x 1 matrices) then we

can define and treat linear mappings of V(IE,) to V(IE,;) in exactly same way as
the linear mappings of R™ do R™.

The contents of this section could naturally be extended to the case when L
is a linear mapping of a general vector space V to a general vector space W. The

theory of such mappings has many applications. However, we do not study the linear

mappings on such a general level in this text.
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1.5. Eigenvalues and eigenvectors of square matrices

1.5.1. Motivation. Suppose that A is an n X n square matrix and L is a linear
mapping of V(IE,)) into itself defined by matrix A. In mathematics and its applica-
tions, one often solves the question whether there exists a nonzero vector x € V(IE,)
whose image L(x) lays on the same straight line as x. The fact that L(x) and x
lay on the same straight line means that L(x) = Ax for an appropriate number A.
The important problem is not only to find such vectors x, but also the corresponding
numbers A. Solution of this problem plays a big role for instance in the theory of
stability of mechanical systems.

In order to keep a simple notation, it will again be advantageous to identify
vectors with n-tuples of numbers, written in a column. Such vectors can be regarded
as n x 1 matrices. Thus, we shall denote vectors in the same way as matrices (i.e. by
capital letters) in this chapter. Since L(X) = A-X, we can write the equation
L(X)=AX intheform A:-X = AX. You will see that this equation can generally
have complex solutions. That is why we admit the possibility that A is a complex
number and the entries (coordinates) of vector X are also complex and not only real
numbers.

On the other hand, the square matrix A, we work with in this section is always
supposed to have only real entries.

1.5.2. Eigenvalues, eigenvectors. A complex number \ is called an eigenvalue
of a square matrix A if there exists a nonzero vector X such that A4-X = AX. Such
a vector X is called an eigenvector of matrix A corresponding to the eigenvalue .

1.5.3. Remark. The eigenvector is not determined uniquely, the number of eigen-
vectors corresponding to the eigenvalue A is always infinite. Clearly, if A- X = AX
(i.e. X is the eigenvector of matrix A corresponding to the eigenvalue A) and
k€ C, k#0, then it also holds: A-(kX) = A(kX). This means that kX is also
the eigenvector of A corresponding to the eigenvalue A.

1.5.4. How to find eigenvalues. The equation A-X = AX can be written in the
equivalent form A- X —AE-X =0 or (A—AE)-X = 0. (E is the n x n identity
matrix and O is the zero vector, i.e. it is the n x 1 zero matrix). The vector equation
(A— AE): X = O can be regarded as the homogeneous system of linear algebraic
equations for the unknown components of the vector X. This system has a nonzero
solution if and only if the rank of the matrix of the system, i.e. the matrix A — AE,
is less than n. (See theorem 1.3.4 and remark 1.3.6.) The inequality r(A — AE) <n
means that the matrix A — AE' is singular (see paragraph I.2.29), which is true if
and only if

(L5.1) det (A — AE) = 0.

(See theorem 1.2.31.) Hence a nonzero vector X satisfying the equation A-X = AX
exists if and only if (1.5.1) holds. Equation (I.5.1) (for the unknown A) is called the
characteristic equation of matrix A. Solving the characteristic equation, we obtain
all eigenvalues of matrix A.
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I.6.6. Example. Find eigenvalues of the matrix A = (g’ ;)

Bolution: The characteristic equation of matrix A is
3-A 4
5 5-2X

Its solution is A\ =4+ 21 a A2 =4-+21.

dut(A-—AE):‘ = (8-X-(6-A)—4-5 = A2-8\-5 = 0.

1.6.6. How to find eigenvectors. Eigenvectors corresponding to the eigenvalue
A can be obtained by solving the homogeneous system of linear algebraic equations
(A= AE)- X =0 (for unknown components zy,...,z, of the vector X).

1.5.7. Example. Find eigenvectors of the matrix A from example 1.5.5 which
correspond to the eigenvalue A; =4+ V21,

Solution: Substituting the value 4+ /21 for A in the vector equation (4~ AE)-
X = O and expressing this equation in coordinates, we obtain the system of linear
algebraic equations

(-1-v2D)z; + 4z, = 0

51, + (1-v21)z, 0.

This system has infinitely many solutions: z; = (1 — 21)p, z2 = —5p (where
p € C). Every vector X with these coordinates z,, T (where p # 0 because X
cannot be the zero vector) is the eigenvector.

1.5.8. Remark. If A is a real eigenvalue of the matrix A then the system of
equations (A —AE)-X = O (for unknown components of vector X) has a matrix all
of whose entries are real numbers. Therefore it is possible to find a nonzero solution
X of this system with all components also being real numbers. This means that to
real eigenvalues there exist real eigenvectors.

1.5.9. Theorem. Let L be a linear mapping of the space V(E,) to itself, given
by the matrix A. Then a nonzero vector X € V(E,) (with real components) is an
eigenvector of A if and only if the vectors X and L(X) are on the same line (or in
other words: they are colinear).

(The theorem easily follows from paragraph 1.5.1 and from the definition of the
eigenvector.) ;

Remark I.5.10. The eigenvalues and the eigenvectors of square matrices have a
series of further interesting properties. However, their detailed explication, proofs and
examples of some applications would go beyond the scope of this text. Nevertheless,
we still present several simple assertions in this remark.

a) The eigenvalues, corresponding to different eigenvalues, are linearly independent.
b) 0 is the eigenvalue of matrix A if and only if A is singular.

¢) If A is an eigenvalue of matrix A and X is the corresponding eigenvector then X
is also an eigenvalue of A and X is the corresponding eigenvector.

d) If A is an eigenvalue of matrix A and X is the corresponding eigenvector then
A? is the eigenvalue of matrix A% and X is the corresponding eigenvector.
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e) If the inverse matrix A~! exists then;)\ is an eigenvalue of matrix A if and only
if 1/ is the eigenvalue of matrix A~!. The corresponding eigenvectors are the
same.

f)* If A is a symmetric square matrix then all its eigenvalues are real. The eigen-
vectors, corresponding to different eigenvalues, are perpendicular.

1.5.11. Example. A is a 3 x 3 square matrix. Decide whether A can have the
given eigenvalues, eventually also the given eigenvectors:

a) 2, 3 b) 3, 241, —3—2i ¢) 5+i, 5—14, 7

=1 2 4
d) 4, 3—14, 3+1i, 5 7,51 2] (3] (6
3 1 2

Solution: a) Matrix A can have the eigenvalues 2 and 3. However, these need not
be all eigenvalues. The characteristic equation of A is a cubic equation and it can
have three different roots.

b) If 2 + i is an eigenvalue of matrix A then 2 — ¢ must also be an eigenvalue
of A. (See remark 1.5.10, item ¢).) Analogously, since —3 — 2i is an eigenvalue, the
complex conjugate —3+ 2i is an eigenvalue, too. However, matrix A cannot have five
eigenvalues 3, 2 £+ i and —3 & 2i because it is a 3 x 3 matrix and as such, it can have
at most three different eigenvalues.

¢)5+i, 5—1¢ 7 can be eigenvalues of matrix A.

d) The given numbers are four, hence the answer is negative.

e) The given numbers can be the eigenvalues of matrix A. The numbers are all
different and so the eigenvectors should be linearly independent. (See remark 1.5.10,
item a).) This is not fulfilled because the third vector is a multiple of the second one.
Thus, the answer is negative.

1.5.12. Problems. Find eigenvalues and eigenvectors of the following matrices.
5» 6| _3
2’ 1 . 3: 4 , 0, a ) -
5 (1, 2)’ &/ (s, 2)' K (—a, o) (a#0); d) (11, g _11)

Results: a) A =3, X1=(£), A =1, X2=(_pp); b) M =7,

_(pr _ _ (4. . _{ P
Xl—(p)) Az = -2, Xz—(5p ), ¢) A2 =+ai, X1 (:l:pi)‘

-2p+gq
d) A=2, X= PR
q

(The parameters p, ¢ can be any complex numbers such that the corresponding
eigenvector is non—zero.) :
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1.6. Survey of equivalent properties of a square matrix

We do not explain any new notion or a new method in this chapter. On the other
hand, you already know everything which follows. Nevertheless, if you are studying
linear algebra for the first time, it is possible that your knowledge is still not enough
classified and various assertions and theorems are not mutually connected. In order
to show clearly the connections, we give a survey of equivalent statements one can
make about a square matrix A in this chapter. (This means that for a given square
matrix A either all statements are true or all statements are false.)

We assume that A is an n X n square matrix.
Then the following statements are equivalent:

2. detA#0.
(See theorem 1.2.31.)

1. Matrix A is regular.

8. An inverse matrix A~ exists. 4. The rank of matrix A is n.
(See theorem 1.2.31.) (See the definition of a regular matrix in
paragraph 1.2.29.)

6. The rows of matrix A are linearly independent.
(See the definition of the rank of a matrix in paragraph 1.2.14 and statement 4.)

6. The columns of matrix A are linearly independent.
(See remark 1.2.16 and statement 4.)

7. The homogeneous system of linear algebraic equations A- X = O has a unique
(i.e. zero) solution.

(See remark 1.3.6.):

8. The general (i.e. homogeneous or non-homogeneous) system of linear algebraic
equations A-X = B has a unique solution.

(See the Frobenius theorem 1.3.7.)

9.* The linear mapping L : R®™ — IR", defined by matrix A, is one-to—one and
the inverse mapping L_, exists. (Its matrix is A=1.)
(See theorem 1.4.13 and remark 1.4.16.)

10.* The range of the linear mapping L : R® — R™, defined by matrix A, is
the whole space R™.

(See remark 1.4.16.)

11. 0 is not an eigenvnlue of matrix A.
(See remark 1.5.10, item b).)

Naturally, the negations of all these statements are also equivalent. Formulate and
write all the negations for yourself. '
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II. Analytic geometry in IE;

I1.1. Some basic notions

II.1.1. Cartesian coordinates in IE3. To locate points and other objects in
space IE3, we use three mutually perpendicular coordinate axes, intersecting at one
point. We denote them z, y, z or =1, T3, £3. Their orientation is chosen so that they
make a right handed system. This means that when you hold your right hand so that
the fingers curl from the positive part of the z-axis toward the positive part of the
y —axis, your thumb points along the positive part of the z—axis. The intersection of
all three axes is called the origin of the coordinate system.

To each point in IE3, we can uniquely assign its Cartesian coordinates — they are
successively the distances of orthogonal projections of the considered point onto the
axes z, ¥, z from the origin, taken with the “+” sign if the projection lays on the
positive part of the axis and with the “—” sign in the opposite case.

Analogously, we can uniquely assign the Cartesian coordinates to each free vector
in IE3 — we choose the concrete position of the vector so that its initial point is at the
origin of the coordinate system and we regard the cartesian coordinates of its end
point as the cartesian coordinates of the vector. (See also paragraph I.1.2.)

To distinguish between points and free vectors in IE3, we write the Cartesian
coordinates of points in IE3 in brackets (for example [1,2,3]) and the Cartesian
coordinates of vectors in IE3 in parentheses (for instance (-1,2,5)).

I1.1.2. The length (the magnitude) of a vector in E3. If u= (ui,us,u3) is
a vector in IJE3 then the number

lull = /ui+uz +u3

is called its length (or its magnitude).

I1.1.3. The scalar product of vectors in [E3. If u = (u3,uz,u3) and v =

(v1,vg,v3) are vectors in IEg then the number
u-v = uj-v; +ug- vy +ug-vs.

is said to be their scalar product (or their dot product). (Compare with the scalar
product of arithmetic vectors, defined in paragraph 1.2.11.)

I1.1.4. Theorem. Ifu and v are non-zero vectors in IE3 and ¢ is the angle between
the vectors u and v then
u-v = [uf|-[[v]|-cos ¢

Proof: Letus choose an arbitrary point A in IE3 and put B = A+ u and
C = A+ v. Obviously, the vector B — C can also be written as u — v. Applying the
cosine theorem to the triangle ABC, we obtain: ||B—C||* = ||B - A|*+||C - A|* -
2|[B=A|||C— Al -cos ¢, or [[u—vi* = [[ul2+][v[[2~2 [ul] [v]|-cos ¢. This yields:
(11 — v1)? + (ug — v2)? + (ug — v3)? = vl +ud + ud + v} +v3 + v] = 2|[ul| V]| cos ¢.
The desired formula is an easy consequence of this equality.
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I1.1.5. Remark. Thus, the non—zero vectors u, v are perpendicular if and only if
u-v=_0.

I1.1.6. Another form of vectors in IE;. Denote by i = (1,0,0), j = (0,1,0),
k =(0,0,1). If u = (u1, ug, ug) is a vector in IE3 then it can also be written down in
this form: u=wu;-i+uz-j+us-k

II.1.7. The vector product of vectors in IE3. Let u = (uj,us,u3) and v =
(v1,v2,v3) be vectors in IE3. The vector

i j k
uxv = uy, Uz, Uz| = (ugv3 - ﬁsvg) i+ (113‘01 - ﬂ1ﬂ3) 'j + (311)2 - U2U1) -k
U1, vz, U3

is called the vector product (or the cross product) of u and v (in this order).

I1.1.8. Theorem. Ifu and v are non-zero vectors in IE3 and ¢ is the angle between
them then

a) the vector u x v is perpendicular to both the vectors u and v;
b) lluxv| = [lull[lv]-sin ¢;

We omit the proof of this theorem. However, the assertion a) can easily be verified
computing the scalar products (u x v)-u, (ux v)-v. All of them are equal to zero.
The vector product uxv is oriented in accordance with the so called right-hand rule:
u X v points the way your right thumb points when your fingers curl through the
angle between u and v from u to v.

I1.1.9. The sum of a’point and a vector. If A = [a1,az,a3] is a point in IE3
and u = (uy,ug, u3) is a vector in IE3, then the sum of point A and vector u is equal
to the point B = [ay + 1,82 + up,a3 + uz] in IE3. We write: B=A+u.

On the other hand, the difference of two points B = [by,be,b3] and A =
[a1,a2,a3] in IE; (in this order) is defined to be equal to the vector u = (by —a1,bz—
as,bs — az). We write: u=B — A.

11.1.10. The distance between two points. Remember that if A = [al,dg,as]
and B = [by, by, b3 ] are two points from IE3 then their distance ||B — A|| is

1B - All = /(a1 = b1)% + (a2 — b2)* + (a3 — bs)*.
(It is the length of the vector B — A.)

I1.1.11. The distance between a point and a set; the distance between two
sets. If A = [a1,a2,a3] is a point in IE; and M C IE, then the distance between
point A and set M is defined as follows:

d(A, M) = inf {||A- X|; X e M}

(See p. 46 for the definition of “inf”.) By analogy, the distance between sets M and N
in IE3 is defined by the formula

d(M,N) = inf {| X -Y|; XeM, YEN}.
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II.2. Straight lines in [E3 .

I1.2.1. A straight line in IE3. If A = [ay,a2,a3] is a point in [E3 and u =
(u1,uz,us) is a non-zero vector in IE3, then the set p={X € E3; 3t€e R: X =
A+t-u} iscalled a straight line in IE3. The equation

(I1.2.1) X=A+ty teR

is called the parametric equation for straight line p. This equation is also often
written down in a coordinate form:

(IL2.2) =z =a1+t-uw, ZTe=az+t-uz, zz=az+t-us; teR.

The straight line p is said to be parallel to u and on the other hand, u is called the
directional vector of p.

If parameter ¢ in (IL.2.1) is taken not from the whole set IR, but for example
only from the interval [—1,5], then (II.2.1) is the parametrization of a line segment.
Its end points are A—u and A+ 5u. Similarly, if ¢ is taken for instance from the
interval [1,= co) then (I.2.1) parametrizes a half-line, etc.

I1.2.2. The distance from a point to a straight line. Let p: X = A+t-u; t€
IR be a straight line in IE; and M be a point in IE3 which does not lie on straight
line p. We show two methods for evaluating the distance d(M,p).

1st method: Denote by P the nearest point to M on straight line p. (It can be
proved that such a point exists and the vector (M — P) is perpendicular to p.) Thus,
for some (still unknown) value of parameter ¢, it holds: P = A+t-u. The value of {
can be evaluated from the equation (M —P)-u=0, ie. (M—P)-u-(u-u)t=0.
Substituting now for ¢ back to the formula P = A +t-u, we obtain the concrete
position of P. The distance d(M, p) is equal to |P — M.

2nd method: AMP is the right M
triangle. Hence d(M,p) = ||M — P|| =
[|M — A|| - sin . It follows from the-
orem IL1.11 that [|[(M — 4) x u|| =
[|M — A ||ul| - sin . Expressing sin ¢
from this equality and substituting it (7] u 1 p
to the preceding equality, we obtain: A P

_|(M - A) x u]
(I12.3) d(M,p) = Tl Fig. 1

I1.2.3. Two straight lines in space. Let p and ¢ be two straight lines in IE3
whose parametric equations are

p: X=A+t-u; teR, g: Y=B+s-v; seR.

We say that p and g are
a) identical (if they have infinitely many common points),

b) intersecting (if they have just one common point),
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¢) parallel, (if they have no common points and vectors u, v are linearly dependent),
d) skew, (if they have no common points and vectors u, v are linearly independent).

Let us now deal with the question how to distinguish between these cases in a
particular situation. We look for common points of straight lines p and ¢. This task
can be reformulated: We seek for such values of parameters ¢, s that using them
In the parametric equations for p and ¢, we get the same point, i.e. X =Y. This
ylelds: A+¢-u= B+s-v. Rewriting this into coordinates, we obtain the system
of three linear equations for two unknowns t, s:

a1 +t-uy=b+s-v, ag+t-ug=bp+s-va, az+t-uzg=bs+s-v3.
This is equivalent to u 't — vn's = b—a,

uz't - Ug'§ = bg—ag,

ug-t = vz:r§ = ba-aa.

If the number of solutions is infinite then the number of common points of
straight lines p, ¢ is also infinite and so the straight lines are identical.

If the above system has a unique solution, straight lines p, ¢ have only one
common point and so they are intersecting.

If the above system of equations has no solution then straight lines p, ¢ have no
common point. Thus, they are either parallel or skew. This depends on directional
vectors u, v. If they are linearly dependent, straight lines p, g are parallel, otherwise
they are skew.

II.2.4. A straight line given by two points. If A and B are two different
points in IEg, then the straight line passing through these points can be described for
example by the following parametric equation:

(I1.2.4) X=A+t-(B-A); teR

11.2.5. Remark. Suppose that points A, B, C, D, E are different points, all lying
on the same straight line p. Put for example u= B - A, v=2: (B — D). Then

the equations
X = A+t-(B-A); teR,

Y = B+s-(C-A); seRR,
Z = D+r-u re R,
X = E+4a-v; aceR

are all parametric equations for line p. (Why?)

I1.2.6. A secant of two lines. A straight line which is intersecting the two lines
p and q is called the secant line of p and g.
11.2.7. Example. Lines p, ¢ are given by their parametric equations

p: X=A+t-u; telR, g: X=B+s-v; tek,

where A = [3,0,-1], u = (2,1,1), B = [1,1,1], v = (1,3,-2). Find a straight
line r which intersects both lines p and ¢ and which passes through the point
M=[-7,-6,5]
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Solution: Denote by P (respectively by 'Q) the point of intersection of line r with
line p (respectively with line ¢). Then there exist such values of parameters ¢ and

s that

(I1.2.5) P=A+t-u, Q=A+s-v.

All of points P, @, M lie on line r and M # Q, because point M does not lie on the
line q. (This can easily be verified: If M € p then the vectors M — B and v would
be linearly dependent. However, this is not true, because (M - B) = (-8,-T1,4),
v = (1,3,—2) and it is seen that none of these vectors is equal to a multiple of the
second vector.) Thus, there exists a number o € R such that

P-M=qa (Q-M).
Substituting here the above expression of points P and Q, we obtain the equation:
A+t-u-M =a-(B+s-v—M).
Writing this in coordinates and using here known coordinates of points A, B, M and
vectors u, v, we obtain a system of three linear algebraic equations for the unknowns
t, as, a:
2t —as—8a=-10, t—3as—-Ta= -6, t+2as+4a=6.
This system has the unique solution ¢ = 2, as = —2, a = 2. Hence, we also get:
s = —1. When used in (I1.2.5), this gives: P =[7,2,1],Q =[0,-2,3]. A parametric
equation for line r can now be written down for example by means of (I1.2.4), i.e.
as the equation of a straight line passing through two known points P, @:

X=P+7-(Q-P); TER,
X=[121]+71-(-7,-4,2); TR
The above equation can also be written in coordinates:

T, =T-1Tr, Z3=2-41, z3=1+2r; T€ER.

IL.2.8. The distance between two straight lines. Suppose that the straight
lines p: X=A+t-u; t€R and
g: Y=B+s-v; s€R are parallel or skew.

To find the distance d(p,q), we first find a straight line r which intersects lines
p, ¢ and is perpendicular to both of them. Denote by P, Q points of intersection of
r with lines p, g. Then P = A+t-u, @ =B+s-v. forsome values of parameters
t, s. Line r is parallel to the vector @ — P. The vector Q@ — P is orthogonal to
vectors u and v. So (Q —P)-u=0, (Q—P)-v=0. Substituting here from the
equations for points P and @, we obtain (after an easy rearrangement):

(v-u)s — (u-u)t = —(B - 4)-u, (v-v)s — (u-v)t = =(B-4)-v.

We solve this system of two linear algebraic equations for unknowns ¢, s and use the
values of t, s in the formulas for P and Q. Finally, the distance between lines p and
q can be calculated as the distance between points P and Q: d(p, g=|P-Q|

I1.2.9. The angle between two straight lines. Suppose that p, g are straight
lines in IE3 whose parametrizations are: p: X =A+t-u; t € R and ¢: X =
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B+ §-v; 8 € IR. Denote by ¢ the angle between vectors u and v. Its cosine is
glven by formula (I.1.6). The angle ¢ can take on the values from 0 to 7 (sketch
a plctu.re). The angle between straight lines p. ¢ is called the angle ¥ € [0,7/2],
which is equal to ¢ if ¢ € [0,7/2] and it is equal to 7 — ¢ if ¢ € (7/2,7]. (In
O:I';l_ger words, the angle between two lines is defined to be the acute or right angle
between their directional vectors.) Using (I1.1.6), we obtain the formula:

[u-v|

(11.2.6) g = 12Vl
B0 Tl v

IJ'..._‘_‘_2.10. Problems. a) Find the angle between the straight lines AB and CD if
A=[-1,2,0], B=[-2,0,2], C=[4,-4,5], D=[2,4,3].

h) Find the distance from the point M = [1,-6,8] to the straight line AB, if
A= [2,1,3], B=[3,-1,6].

¢) ‘Find the distance between the straight lines p: X =[6,4,3]+¢-(1,1,1); te R
aad g: X =[7,0,-18]+5-(2,—1,4); s € R.

Results: a)cosd=v2/2,9=n/4, b)436 c)11.83

I1.3. Planes in IE3

I1.3.1. A plane in [E3. If A=[A;,a,a3] is a point in IE3 and u = (uy, ua, ua),
v = (vy,v9,v3) are two linearly independent vectors in IE3, then theset o ={X €
Es; doeR, 3feR: X =A+a-u+f-v} is called the plane in IE;. The
equation

(I1.3.1) X=A+a-u+p-v; o, BeER

ls called the parametric equation for plane o. This equation is often used in the
coordinate form:

m=a+a-u+ph-v

Ty=az+a-uz+f-v;y

r3=az+a-uz+ f-vs; a, BER.
II.3.2. A plane given by three points. Let A, B, C be points in IE; which

do not lie on a line. A plane passing through all these points (it will also be called
plane ABC) can be described by the parametric equation

(I1.3.2) X =A+a-(B-A)+B-(C-A4); o f€eR.

II‘.3.3. Remark. Each plane has infinitely many parametric equations. (Compare
with lines — see remark I11.2.5).

II.3.4. A normal vector. Let o be a plane, given by the parametric equation

(I1.3.1). Every non-zero vector which is perpendicular to plane o (i.e. perpendicular
to vectors u, v) is called the normal vector to plane o.
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It follows from theorem II.1.11 that for example the vector n = u X v is the
normal vector to plane ¢. All other normal vectors to plane ¢ are non-zero multiples
of n, i.e. they have the form c-n, where c € IR, c# 0.

11.3.5. Another analytic description of a plane. If ¢ is a plane whose
parametric equation is equation (I1.3.1) and if its normal vector is n = (ny, ng,na),
then any point X = [z, Z2,73] in IE3 belongs to plane o if and only if (X -A)-n=
0. Expressing the scalar product on the left hand side, we get:

(1 —a1) *n1+ (w2 — az) - na + (v3 — a3) -ng = 0,
(I1.3.3) nz+npsa+ng+¢ =0,

where ¢ = —a1n1 — azng — agng. Equation (I1.3.3) is called the equation for plane o.

Equation (I1.3.3) can be obtained from the parametric equation for plane o
(written in coordinates) by excluding parameters o and 3. Conversely, if plane o
is given by equation (I1.3.3) then its parametrization can be obtained for example
in such a way that we find three different points A, B, C of o (i.e. points whose
coordinates satisfy equation (II.3.3)) which do not lie on a line, and we then use
(I1.3.2).

11.3.6. Example. Let plane ¢ have the equation 5z, — 3z + 7z3 —12 = 0.
Then the vector n = (5,—3,7) is the normal vector to this plane.

11.3.7. The distance from a point to a plane. Assume that plane o is given
by the parametric equation (I1.3.1) and M is a point in JEg. We derive a formula
for the distance d(M, o).

From the right-angled triangle APM,
we obtain: d(M,s) = |[M - P|| =
[|[M — Al - cosp. cos g can be ex-
pressed by means of the scalar product
of the vectors n and (M — A):

0 s i
llafl - [|M - A

(n is an arbitrary normal vector to pla-

cos

ne ¢.) Using this in the formula for
d(M, o), we get
In- (M — 4)|
11.34) dM,0) = ——=. )
o 2= ) Fig.2

Suppose now that M = [m;,mz,mz]. Then n-(M — A) = nimy +namz +
ngmg + ¢ (where ¢ = —nja; — nzas — nzaz). Substituting this to (I1.3.4) and
expressing |n| as /n] +nj +n3, we obtain:

(11.3.5) d(M,q) = [n1my +nymg + ngms + g|
V/ni +nj + 13

This formula is useful especially if plane ¢ is given by equation (I.3.3).
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I1.8.8. Remark. Assume that p is a straight line, given by parametric equations
(I1.2.2). Excluding parameter ¢ from the three equations (II.2.2), we obtain a system
of two equations which can be written in the form

(IL3.6) niz) +njza +nhzs+4¢ =0, nf{zy + nfizy + nijzs + ¢’ = 0.

Btraight lines are often described by such systems of two equations. Each of them is
an equation for a plane, and the straight line is the intersection of the two planes.

Conversely, if a straight line is given by two equations of type (IL.3.6) then its
parametrization can be obtained for example as follows: We solve equations (I1.3.6)
8 two equations for unknowns zj, z3, 3. If the planes described by the equations
In (I1.3.6) are not parallel (or even identical) then the general solution contains one
arbitrary parameter (see remark 1.3.8). Writing down the general solution of (II.3.6),
we get the parametric equation for the line.

I1,8.9. Example. Find a parametrization of the line given by two equations

52y 4+ Txg —4z3+1=0, 2z, +4x9 — 423 -2 =0.

Applying for example Gauss’ method of elimination, we express the solution of this
system: z; = —2t—3,z2 =2t+2,z3 =t (t € R). These three equations represent
parametric equations for the line. Obviously, the parametric representation can also
be written in a vector form, as one equation: X = A+¢-u, where A =[-3,2,0]
and u=(-2,2,1).

I1.3.10. A position of a straight line according to a plane. Let us deal with
i straight line p and a plane o in space IE3. p and o can find themselves in three
different positions:

) Line p is a subset of plane o.
b) Line p intersects plane o at one point.

¢) Line p and plane o are disjoint, they have no common points. In this case, we
say that line p is parallel to plane o.

How to distinguish between the possibilities a), b), ¢) in a particular case? Let
us analyze for example the situation when line p is given by two equations (IL.3.6)
snd plane o is described by one equation (I1.3.3). Equations (II.3.6) and (IL.3.3)
together form a system of three linear equations for three unknowns z, 2, z3. We
solve this system. There are three possibilities (see Frobenius’ theorem): 1) The
#ystem has infinitely many solutions. 2) The system has a unique solution. 3) The
system has no solution. These possibilities successively correspond to the cases a),
b) and c) mentioned above. In case 2) the solution of the system gives coordinates
of the point of intersection of line p with plane o.

We will examine the position of a line according to a plane once again in example
11.3.12, the line will be given parametrically this time.

11.3.11. The angle between a straight line and a plane. Let p be a straight
line and o be a plane in space IE;. If line p is not perpendicular to o then the
gngle between line p and plane ¢ is defined to be equal to the angle between line p
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and its orthogonal projection to plane,o. If line p is perpendicular to plane ¢ then
the angle between them is defined to be equal to /2.

How can the angle between line p
and plane ¢ be evaluated in a particu-
lar case? First we determine a normal
vector n to plane o (see paragraph
I1.3.4 or possibly also I1.3.5, I1.3.6).
Let ¢ be an arbitrary line parallel to y
vector n (see Fig. 3). Denote by 1 the
angle between lines p and ¢g. cos ¥
can be calculated from (IL2.6). The
angle between line p and plane ¢ is
equal to 7/2— 4.

Fig. 3

11.3.12. Example. Line p is given parametrically: z; = 1+1¢, z3 =24t, 73 = 3.
Plane o is given by the equation 273; + 473 + 473+ 2 = 0. What is the position of
p according to ¢ and what is the angle between p and o7

We substitute for z;, T3, 3 from the parametric equations for p to the equation
‘for sigma. We obtain the equation for the unknown &: 2+2t+8+4t+12+2=0.
This equation has a unique solution t= —4. As the solution exists and is unique,
line p and plane ¢ have a unique common point. The coordinates of this point can
be obtained by the substitution of ¢ = —4 to the parametric equations for line p:
Ty =-3, T2 =-1,23=3.

For example, the vector n = (2,4,4) is the normal vector to plane o. A di-
rectional vector of line p can be chosen for example to be equal to the vector
a = (1,1,0). The angle between line p and a line with the directional vector n is
the angle ¥ whose cosine can be calculated by formula (IL.2.6). It is equal to v/2/2.
Since ¥ is the acute angle, the information on its cosine implies: ¥ = w/4. Hence
the angle between line p and plane ¢ is the angle Y =n/2 -9 =7/2-n/4 =7/4.

11.3.13. A position of two planes in space. Two planes in space IE3 can either
be identical or intersecting in a line or parallel. If two particular planes are given and
one wishes to recognize which of these cases obtains, then the approach one can use
depends on the way the planes are given. We show two possible methods in examples
I1.3.15 and II.3.16.

II.3.14. The angle between two planes. The angle between two planes ¢ and 7
is defined to be equal to the angle between two arbitrary lines, the first of which is
perpendicular to plane ¢, and the second being perpendicular to plane 7.

11.3.15. Example. Analyze the position of plane ¢ according to plane n and
evaluate the angle between them. o: z1—z2+z3—1=0 and n: 2z14+22—23—-1=0.

Coordinates of common points of the two planes must satisfy both equations.
The equations represent the system of two linear equations for the unknowns =, 2,
z3. We can easily check that the system has the solution z; = 2, 2z = -1 +1¢,
z3 = t; t € IR. These equations for z;, =, T3 can be regarded as parametric
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oquations of the line which is the intersection of planes o and 7.

The vector n’ = (1,—1,1) is the normal vector to plane ¢ and n” = (2,1, -1)
I8 the normal vector to plane 5. Applying formula (IL.2.6), we can now find out that
the angle between planes o and 7 is equal to 7/2.

I1,8,16. Problems. 1) Find the distance from point M to plane o, if

.) M = [7,0,—*1], o 3z +Ta—223+5=0,

b) M=[23,-1], o: X=[1,0,-1]+a-(2,0,1)+3-(0,2,1); o, BER.
9) What is the position of plane ¢ in relation to plane n and what is the angle
between o and 75 if

)0t 321 —-622+6x3+9=0 and m: =z — 232+ 223 -3 =0,

b) ¢ 221 —z94+23—-1=0 and : z 1 +z2+223+1=07
3) Find the angle between the line AB (where A=[2,-1,2] and B =[1,-1,1])
and'the plane o: z; — 23— 5=0.
4)" Find coordinates of an orthogonal projection of the point A = [7,0,-1] onto
the plane ¢: 3z +z2 —2z3+5=0.
B) In which position is line p in relation to plane o, if p : 5z1+752—4z3+15=0,
122y =222+ 82z3+3=0 and o : 521+ Tz —42z3-8=07
0) In which position is the plane ABC inrelation to the plane DEF,if A =(1,1,2],
b= [1r1!4]’ C= [1’211]1 D= [2!0|_1}! E= [2llr1]! F= {41_113]? Also
find the angle between the planes ABC and DEF.

Results: la)2v/14 1b) 4//30

2n) The planes are parallel and their distance is 2.

2b) The planes intersect in the straight line X = [0,-1,0] +¢(—1,—1,1), the angle
between them is 7/3 = 60°.

9)#/6=30° 4)[1,-2,3]

b) Straight line p and plane o are parallel, their distance is 23/ V/90.

0) The planes intersect in the straight line X = [1,2,0]+¢(0, 1,2), the angle between
them is 36.67°.

I1.4.* Quadric surfaces in IE3

11.4.1. Quadric surfaces in IE;. From secondary school, you are familiar with
conic sections in IE; and with their equations. These equations are quadratic. Anal-
ogously, quadratic equations describe so called guadric surfaces in IJE3. A general
oquation for a quadric surface is

(I14.1)

1173 + 61271 %2 + 6137123 + 62273 + G23 T2 T3 + Gza T3+
+bizy + baza + bszs + ¢ = 0.
(The statement “quadric surface ¢ is described by equation (IL.4.1)” or “(IL.4.1) is

the equation for quadric surface ¢” means that quadric surface o is the set of all
points in IE; whose coordinates satisfy equation (II.4.1).)

It can be shown that there exists a Cartesian coordinate system z, x5, 5 in
IE3 which is only turned on in relation to the coordinate system z;, T3, 3 and the
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quadric surface given by (I1.4.1) can be described in the new system by an equation
which does not contain the mixed products z} z, z} z§, =5 z3.

To avoid complications, we shall further deal only with quadric surfaces whose
equations even in the coordinate system 1, 2, 3 do not contain the mixed products
T1Za2, T1Z3, Tzz3. This approach corresponds to situations you have been used to
from analytic geometry in plane from secondary school. For example, you have mostly
described an ellipse in the z, y—plane by an equation which contained the terms z?
and y?, but it did not contain the mixed product zy. This means that you have
(mostly) restricted yourself to ellipses whose axes are parallel to the z and y axes.

We present only a survey of the names of quadric surfaces which correspond to
the most important special cases of equation (I1.4.1) in the following. Instead of z1,
Zq, T3, we use the denotation z, y, 2 in the rest of this chapter.

11.4.2. Circular quadric surfaces (quadric surfaces of revolution). A surface
which arises by the rotation of a conic section about its axis is called a circular quadric
surface or a quadric surface of revolution. Particularly, the rotation of

— an ellipse about its axis gives ................. a circular ellipsoid,

- a parabola about its axis gives ............... a circular paraboloid,
- a hyperbola about its non—focal axis gives ....
- a hyperbola about its focal axis gives ......... a two sheet—circular hyperboloid,

- two skew lines about the axis of symmetry lying in their plane gives
. a circular conic surface,

a one sheet—circular hyperboloid,

— two parallel lines about the axis lying in the middle between them gives
. a circular cylindrical surface.

The first four surfaces are so called reqular quadric surfaces, the last two are so called
singular quadric surfaces.

11.4.3. How to recognize a circular quadric surface. If the equation of a
quadric surface depends on z and y only through z? +y? (i.e. # and y appear in the
equation only as a part of the expression 2 +y2) then the quadric surface is circular
and its axis of revolution is the z-axis.

This holds due to the following reason: 2 + y? is the second power of the
distance of the point [z,y, 2] from the 2-axis. Thus, = and y appear in the equation
only through the distance of [z,y, 2| from the z-axis. The distance is the same on
each circle which lies in a plane perpendicular to the z-axis and such that the z-axis
passes through its center. This means that either all points of the circle satisfy the
equation (and all points of the circle belong to the quadric surface) or no point of the
circle satisfy the equation (and therefore no point of the circle belongs to the quadric
surface).

Analogous assertions can also be formulated in the cases when the equation of
some quadric surface depends on z, z only through 22 + 22 or if it depends on y, 2
only through y? + 2%

I1.4.4. Quadric surfaces in the basic and in a shifted position. Conic sections
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sections in a plane can be in a basic position (for example the ellipse z?/a® +
¥?/b* = 1), or in a shifted position (as the ellipse (z—a)?/a® + (y—B)?/b? = 1).
Analogously, quadric surfaces in IE3 can also be in a basic or in a shifted position.
We restrict ourselves to quadric surfaces in the basic position in this text. Equations
for the same surfaces in the shifted position (shifted by the vector (o, 8,7)) can be
obtained from the equations for surfaces in the basic position by replacing z? by
(@=a)? y? by (y—p)* and 2% by (z-%)%

-——————3

Fig. 4 Fig.5

I1.4.5. Ellipsoid. Let a, b, ¢ be positive numbers. The equation

3.‘2 y2

2
FA
ro

(I1.4.2) + = =1
c
defines a so called ellipsoid with semi-axes a, b, c. The center of the ellipsoid is the
point [0,0, 0]. (See Fig. 4.)
If any two of the semi-axes are equal, the ellipsoid is circular (= the ellipsoid
of revolution). (See Fig. 5.) If all three semi-axes are equal, the ellipsoid coincides
with a sphere. .

]

I1.4.6. One sheet—hyperboloid. Let a, b, ¢ be positive numbers. The equation

x2 y2 z2

a2 B2
is the equation for a so called one sheet - hyperboloid (= a hyperboloid of one sheet).
(See Fig. 6.)

If a = b then it is a circular one sheet - hyperboloid (= a one sheet — hyperboloid

of revolution) which arises e.g. by revolution of the hyperbola z?/a% —2%/c* =1 in
the z, z—plane about the z-axis.

(II.4.3) =1

11.4.7. Two sheet—hyperboloid. Let a, b, ¢ be positive numbers. The equation
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(I.4.4) S-m-3=1

defines a so called two sheet — hyperboloid (= a hyperboloid of two sheets). (See Fig. 7.)

If b = ¢ then the hyperboloid is circular and its axis of revolution is the r—axis.
It arises e.g. by revolution of the hyperbola z?/a® — z%/c* =1 in the z, z-plane
about the z-axis.

——————
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Fig. 6 Fig.7

Fig. 8 Fig.9

11.4.8. Paraboloid. Let a, b be positive numbers. The equation
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2?2yl
(11.4-5) z= el + 2
|a the equation for a so called elliptic paraboloid. Its axis is the z-axis. (See Fig. 8.)
If a = b then the paraboloid is circular (in other words: it is a paraboloid of
revolution). It arises e.g. by revolution of the parabola z = z2/a® in the z, z—plane
about the z-axis.

The equation
2 2
(11.4.6) =5 -0
defines a so called hyperbolic paraboloid. (See Fig. 9.) This paraboloid intersects

every plane of the type 2z =c¢ (where ¢ > 0) in a hyperbola.

&

Fig. 10 ' Fig. 11

I1.4.9. Cylindrical surface, cylinder. Let a, b be positive numbers. The
equation
2 g2
(IL4.7) aZtE =1
defines a so called elliptic cylindrical surface. (See Fig. 10.)

If a = b then it is a circular cylindrical surface (= a cylindrical surface of
revolution). This arises e.g. by rotation of the parallel lines z = a, y = 0 and
z=—a,y=0 about the z—axis.

The equation

1:2 y2
(IL4.8) S-E=1
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defines a so called hyperbolic cylindtical surface (= a hyperbolic cylinder). (See

Fig. 11.)
The equation

(I1.4.9)

defines a parabolic cylindrical surface (=

y = kz?
a parabolic cylinder). (See Fig. 12.)

I1.4.10. Conic surface, cone. Let a, b, ¢ be positive numbers. The equation

IZ y2 22
(I1.4.8) StEg-a=0

describes a so called elliptic conic surface (= an elliptic cone).
If b = ¢ then the cone is circular. This arises for example by rotation of the

straight lines z/a=z/c, y=0 and z/a=z/c, y=10 about the z-axis.
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Fig. 12 Fig. 13

You will again meet with quadric surfaces in the Mathematics II course, espe-
cially in the chapter on surface integrals.

I1.4.11. Exercises. The given equations define various quadric surfaces. Recognize
their types, give them appropriate names and specify their axes, possibly also semi-
axes.

b) 25(x—1)2+y*+22=25
d) 22— (y—-2)%/4-(z-4)/4=1
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a) 22 +y2/4+922 =1
c) #?/d+y?/4—-22/9=1

e R AR

e

B P-at=z h) (c+2)7-522=y

) #¥4+22=4 i) 2?4+ (y+4)? =1

k) da? +92% = 9y? ) (y—1)2+2%=2z?

m) 22 -422=1 n) (y+2)?/4-2%/16=1

0) da? — 922 = 9y? p) y=z*+2

) Bd+4%=1 1) (z-4)/4+y*/16+27 =1
Results:

#) The ellipsoid with center [0, 0] and semi-axes 1, 2, 3

b) The circular ellipsoid with center at the point 1,0, 0] and semi-axes 1, 5, 5. Axis
of revolution is the r-axis.

¢) The circular one-sheet hyperboloid with center at the origin. Axis of revolution
Is the z—axis.

d) The circular two-sheet hyperboloid with center [0, 2, 4]. Axis of revolution is the
straight line y = 2, z = 4, parallel with the z—axis.

0) The elliptic paraboloid with center at the origin and axis z, open in the positive
direction of the z—axis.

{) The circular paraboloid with vertex [0,1,2], open in the negative direction of
the y—axis. Axis of revolution is the straight line z = 0, z = 2, parallel with the
y-axis.

g) The hyperbolic paraboloid with vertex at the origin and axis z.

h) The hyperbolic paraboloid with vertex [—2,0,0] and axis y.

1) The circular cylindrical surface. Axis of revolution is the y-axis and radius
equals 2.

)) The elliptic cylindrical surface. Its axis is the straight line z = 0, y = 4, parallel
with the z—axis.

k) The elliptic conic surface with vertex at the origin and axis y.

1) The circular conic surface with vertex [0, 1,0]. Axis of revolution is the straight
line y = 1, z = 0, parallel with the z—axis.

m) The hyperbolic cylindrical surface, parallel with the y—axis, symmetric according
to this axis.

n) The hyperbolic cylindrical surface, parallel with the z-axis, symmetric according
to the straight line z = 0, y = —-2.

0) The circular conic surface with vertex at the origin. Axis of revolution is the
ZT—-axis.

p) The parabolic cylindrical surface, parallel with the z-axis. It meets the z, y—
plane in the parabola with vertex [0, 2] and axis y. (Its equation in the z,,y-plane
is identical with the equation of the whole cylindrical surface: y = z® +2.)

q) The elliptic cylindrical surface. Its axis is the z—axis.
r) The ellipsoid with center at the point [4,0,0] and with semi-axes 2, 4, 1.
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