III. Differential calculus

The extended set of real numbers. The eztended set of real numbers 111 t.he
union of R with the two point set that contains the elements called 5
minus infinity and denoted +o0 and —oo. The extended set of roal numbers will be
denoted by IR*. Its elements —o0 and +oo will be called the _umawmjnﬂ. other
elements (i.e. numbers from R) will be called the proper points. The operations
addition, subtraction, multiplication, division and raising to a power, which are well
known in IR, can be extended in a natural way to IR*:

a) if z € R then we put
z+ (+o0) = +00, T+ (—o0) = —00, ZT-— (+00) = =00,
z — (—00) = +00, z/(+00) = z/(—00) = 0;
b) (+00) + (+00) = +00, (=00) + (—00) = —00,  (+00) = (~00) = +00,
(—00) — (+00) = —00,
(+00) - (+00) = +00,  (+00) (—00) = =00, (-00): (=00) = +00;
¢) if z € R— {0} then we define
- (+o0) = +oo (ifz>0) or - (+00) = -0 (if z <0),
- (~o00)=—00 (ifz>0) or z-(~00) = +oo (if (x < 0),
(+00)/z = sgnz - (+00), (~o0)/z = sgnz - (—00).
The operations division by zero, (+00) — (+00), (—00) = (=00), (+00)+ (=00),
(oc)/(£oc) and O (00) remain undefined. (We say that they have no sonse.)
The set IR is ordered by the relation “<” (“less than”). This relation can natu-
rally be extended to R*: For any ¢ € R we define: —o0 <& and @ < +00.

Extreme values of sets in R. If M is a subset of IR then the magimum of M
is a number y € M such that VreM: = < y. The maximum of the set M is
denoted by max M.
By analogy, the minimum of set M is a number z € M such that V 2 € M
£ > z. The minimum of the set M is denoted by min M.
It can easily be observed that not every set M in IR must have a maximum and
a minimum. (See for example M = (0,1).)
A generalization of the notion of maximum of set M 18 a 80 called supremum of
set M. Number K € IR* is said to be the supremuin of set M if
a) VeeM : =z <K,
b) K is the least of all numbers with property a).
Supremum of set M is denoted by sup M. Each number K which satisfies condition
a) is a so called “upper bound” of set M. This is the reason for another often used
name and denotation of the supremum: the least upper bound, lLu.b. M.
By analogy, we can define the infimum of set M. It is denoted by inf. M and 'Et
is the greatest of all numbers L € IR* such that V = € M : « > L. The infimum 18
also often called the greatest lower bound and denoted by g.l.b. M.
On the contrary to the maximum and minimum which need not exist, it can ‘be
proved (not very simply) that every set in R has a supremum and an infimum. Verify
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for yourselves that if maz M exists then sup M = max M. Similarly, if min M
exists then inf M = min M.

Neighborhoods of points in IR*. If z € IR, then a neighborhood of point z is
any interval (2°— €,z +¢€) where € > 0. This neighborhood is denoted by Ue (z) or
simply U(z). (The notation is derived from the German name for the neighborhood:
die Umgebung.)

A reduced neighborhood of the point z € IR is every set of the type U(z) — {z}.
This neighborhood will be denoted by P(z).

A neighborhood of +00 (= the reduced neighborhood of +0c) is any interval
(a,+00) (where a € R). A neighborhood of —co (= the reduced neighborhood of
—o0) is any interval (—oc,a) (where a € R). As we do not distinguish between the
neighborhood and the reduced neighborhood of +o0, we can denote it either U (+00)
or P(+o0c). Similarly, the neighborhood of —co can be denoted by U(—oco) or by
P(—o0).

A left neighborhood of point z € R is any interval of the type (z —,z), where
¢ > 0. Similarly, we can define a right neighborhood of point = € R to be any interval
of the type (z,z +¢&) where £ > 0. The left (respectively the right) neighborhood of
the point = is denoted by P-(z) (respectively Pi(z)).

111.1. Sequences of real numbers

II.1.1. A sequence of real numbers. A sequence of real numbers (shortly a
sequence) is a mapping of the set of natural numbers IN to the set of real num-
bers IR. A sequence which to every n € IN assigns the number a,, is denoted by
{a1, a, as, ...} or shortly {an}. The number a, is called the n-th term of the
sequence {a,}. If M C R and a, € M for all n € IN then {a,} is called the
sequence in M.

II1.1.2. Bounded, monotonic and strictly monotonic sequences. The se-
quence {a,} is called

a) bounded above if there exists K € IR so that Vn € N: a, £K;
b) bounded below if there exists K € IR so that VneIN: a, 2 K;
c¢) bounded if it is bounded above and bounded below; )

d) increasing if Vn € IN: an < @n413

e) decreasing if VneIN: an > Gni1;

f) non-decreasing if Vn €IN: an < any1;

g) non-increasing if Yn€IN: an 2 any1;

h) monotonic if it is non-increasing or non-decreasing;

i) strictly monotonic if it is increasing or decreasing.

IIL1.3. Remark. Notice that: An increasing sequence is a special case of a
non-decreasing sequence. A decreasing sequence is a special case of a non-increasing
sequence. A strictly monotonic sequence is a special case of a monotonic sequence.
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I11.1.4. The limit of a sequence. The number a’e R* is called the limit of the
sequence {an} if

(IIL1.1)  [VU(a)] [FneeN] [VoneN]: (n>ng) => (an €U(a)).

(We read it: For every neighborhood Uf(a) of the point a there exists ng € IN so
that for all n € IN it holds: If n > ng, then a, € U(a).) The fact that a is the
limit of the sequence {a,} is written down in this way: lima, = a or shortly
@n — a.

IIL.1.5. Remark. A limit of the sequence {a,} is a number a such that the
elements a,, tend to a (approach a) if the indices n tend to infinity (n approaches
infinity). You may have an impression that the statement (II1.1.1) is an unnecessarily
complicated description of this situation which intuitively seems to be quite clear.
However, the reason is that mathematics does not have another, simpler, but also
precise expression of the notions “to tend”, “to approach”. In case you do'not
understand the statement (II1.1.1) immediately after reading it for the first time,
don’t worry. It may take some time and some thought to understand it well. An
attentive study of the proof of theorem IIL.1.8 may help. The notion of the limit
of a sequence (or of a function — which will be introduced later) is one of the basic
notions of mathematical analysis. Its importance is given mainly by the fact that it
describes a certain infinite process (of approaching a number). It first appeared in
the 16th-17th century. It brought dynamics to mathematical thinking, which had
remained strongly under the influence of ancient mathematics, and it also led to ways
of dealing with a “mysterious” infinity.

Not every sequence must have a limit! You can see an example of a sequence
which has no limit in paragraph I11.1.12.

If a sequence has a limit then the limit (its existence as well as its value) is not
dependent on the behavior of any initial part of the sequence (containing for example
the first one million terms). On the contrary - if the sequence {a,} has the limit a
and we modify the sequence so that we change arbitrarily the values of its first one
million terms, then the modified sequence will also have a limit equal to a.

II.1.6. A convergent and a divergent sequence. If a sequence {a,} has a
limit from IR (i.e. is not equal to —oco or +o0), then we say that this sequence is
convergent. A sequence which either has no limit or has an infinite limit is called

divergent.

II1.1.7. Remark. If lima, = e and a € IR then we also say that the sequence
{an} converges to the number a.

II1.1.8. Theorem. Every sequence has at most one limit.

Proof: Weshow aso called “proof by contradiction”. We assume that the
assertion of the theorem does not hold and by means of further considerations, we
derive a contradiction with this assumption. Thus, the assumption will be shown to
be false and so the theorem will be proved.

If the assertion of the theorem does not hold then there exists at least one
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sequence which has more that one limit. Let us denote this sequence by {a,} and
let o’ and a"” be its different limits. There exist neighborhoods U(a’) and U(a")
which are disjoint (i.e. their intersection is an empty set). According to (IIL.1.1), to
U(a') there exists n; € IN so that the following implication holds for all n € IN:
n>n; = a, € U(a’). (II.1.1) also implies that to the neighborhood U(a")
there exists ny € IN such that the implication n > ny => a, € U(a") holds for
all n € IN. This means that if n is so large that it is > n; and > ny then a,
must belong to U(a’) and also to U(a"). However, this is impossible since U(a’)
and U(a") have no common points. This is the desired contradiction.

II1.1.9. A subsequence. Let {k,} be an increasing sequence of real numbers.
Then the sequence

{akl, Qkgy Qkgy +++ 5 Ok, sy }

is called the subsequence of the sequence {a,}. The subsequence is shortly denoted
by {ak,}

I11.1.10. Example. The sequence {1/(2n)} (i.e. the sequence {%, 41, %, -é-, .3
is the subsequence of the sequence {1/n} (i.e. of the sequence {1, 3,3, 1, %,...}).

III.1.11. Theorem. If the sequence {a,} has a limit equal to a then its every
subsequence has the same limit a.

Proof: Suppose that lim a,, = a, i.e. that (III.1.1) holds. We want to show that
lim ag, = a, ie. that the following statement holds:

[VU(a)] [FnieN] [VmeN]: (n>n) = (ax, €Ula)).
(IIL.1.1) implies that to any U(a) there exists ng € IN such that a, € U(a) for all
n > ng. If we now choose n; to be such a natural number that k,, > ny for m > n,

then apparently the required implication (m > n;) = (ax, € U(a)) is satisfied
for VmelN .

I11.1.12. Example. The sequence {(—1)" - n} has no limit. The subsequence,
consisting only of the terms with even indices n (i.e. the sequence {2, 4,6, 8,...})
has the limit +oco. The “complementary” subsequence, containing only the terms
with odd indices n (i.e. the subsequence {~1, =3, =5, =7, ...}), has the limit
—oc. If the sequence {(—1)"-n} had a limit a then according to theorem IIL1.11,
both subsequences would have the same limit a. However, as we see, this is not true.

The rules given by the following theorem play an important role in evaluation
of concrete limits. Their proofs are omitted.

I11.1.13. Theorem. Let lima, = a and limb, = b. Then the following
equalities hold:

a) lim (an +by) = a4+,
¢) lim (ap-by) = a-b,

b) lim (@n —bp) = a—b,
d) lim (an/bn) = a/b,

(provided that the expressions on the right— hand sides have a sense and in the case
d) the quotient a, /b, has a sense for all n € IN).
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III.1.14. Remark. Thus, the right- side cannot contain for example the expres-
sions (+00) + (—0), (+o0) = (+00), (+00)/(£00), 0+ (£oo) and a/0. Moreover,
when computing the limit of the quotient a, /by, we need this quotient to be defined.
Since the limit does not depend on the behavior of initial mg terms of the sequence
(for an arbitrary, but fixed number mo € IN — see remark II1.1.5), from the point of
view of the evaluation of the limit the quotient a, /b, need not necessarily be defined
for all n € IN. It is sufficient when it is defined only for n > mo.

. 3n*+2n—1 . 3+ (2/n) — (1/n%)
N . . e —— L ‘""-"'_'_'_T_ b
FI.1.15. Bxample. Hm g 2+ (1000/nZ)
_ 5 3+2/+00—1/(+00)* _3+0-0 _ 3
= M T 1000/ (+00)2. 240 2’
. " (Vm—=+v2n)(yn +v2n)
ede . . - = 1 =
I11.1.16. Example. lim (vn —v2n) im Vit Vo

non_ lim -—_ﬁ = —00
Vi +v2n 1++2
I11.1.17. Theorem. Let {a,}, {bn}, {cn} be such sequences that lima, =
lime, =c and Vne€IN: a, <by <cn. Then limb, =c.

= lim

The last theorem is often called “the sandwich theorem” - try to guess why.

II1.1.18. Example. We show that lim {/n =1. Put {/n =1+4,. Raising this
equality to the n—th power, we obtain:

_ n n 2 n 3 n
eore (Do (D) as ()8

Since d,, > 0, we have for n > 1:
n\ o _ nn-1) 4 > 2
nz(z)dn—-——-—z o5 =} 0<6, < —"

Obviously, lim 1/2/(n — 1) = 0. Hence due to theorem IIL.1.17, it also holds that
lim 6, = 0. The desired result - lim {/n = 1 - now follows from the equality
Yn=1+6,.

II1.1.19. Problems. Evaluate the following limits (or prove that they do not
exist):

3nd—n+1
R 3 _ 2 _ o o . AN L)
a) lim (n®—-3n%-521n)b) lim ¥/3n ¢} lim T Tn
. n 2n . . ]
d) lim(-1) 3 e) lim (vn+2-+vn+1)f) lim(y/n-V3n)
. sinnm . 2n W 20 (=17
g) lim h) lim m l.) lim 3n

Results: a)+oo, b) 1, c) +oo, d) does not exist, e) 0, f) +o0, g) 0, h) 3,
i) 0.
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II1.1.20. Problems. Try to prove that the following assertions hold:
a) A sequence of non-negative numbers cannot have a negative limit.

b) A sequence of non-positive numbers cannot have a positive limit.

III.2. Functions — basic notions

II1.2.1. The notion of a function. If M C IR, then each mapping of M to R
is called a real function of one real variable (shortly: a function).
Functions will be denoted by letters, as for example f, g, h, @, ¥, F, G, etc.

II1.2.2. Domain, range and graph of a a function. A function is a special case
of a mapping and the notions “domain of definition of a mapping” (shortly: “domain
of a mapping”) and “range of a mapping” are known from secondary school. Hence,
the notions “domain of a function”) and “range of a function” can also be regarded
to be known. In accordance with the denotation which is used in connection with
general mappings, D(f) will be the domain of definition and R(f) will be the range
of function f.

A graph of function f is the set G(f) = {[=, f(z)] € R% z € D(f)}.

IT1.2.3. Remark. For example, the fact that f is the function defined in the
interval (0,2] which assigns to each z from this interval the value z® — 1, can be
written down in the following ways:

a) f: y=2z?-1 for z€(0,2];
b) f(z)=22-1 forze(0,2].
z is called the-dependent variable or the argument of the function f. If we use

notation a), we can call y the irdependent variable.

Functions are often defined only by formulas, without an exact specification of
their domain of definition. In these cases, the domain is the set of all z € IR such
that the formula (used in the definition of a function) has a sense. For example, the
function f(z) = /T — 2 (with no more specifications) has the domain [2,+00).

On an exact level, there is the following difference betwéen f and f(z): f is
the denotation of a function, while f(z) is the value of function f at the point z
(i.e. f(z) is the number that is assigned by the function f to the number z). By
analogy, f(a) is the value of the function f at the point a, f(2) is the value of the
function f at the point 2, etc.

However, the reader should be informed that this notation of functions and their
values is not used consistently in scientific literature. For example, if one wishes to
point out that f is a function of the variable z, then one often speaks about a
“function f(z)” or about a “function y = f(z)” instead of a “function f" only.

Moreover, instead of “the function f defined by the equation f(z) = x*", one
often speaks about “the function z2” only. If there is no danger of confusion, we
shall also use this abridged and labor-saving notation.
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As you can see, functions can be denoted and written down in various ways and
some notations can even have more than one sense. (For instance, as we have already
mentioned, f(z) means exactly the value of function f at the point z. However,
f(z) can also sometimes denote function f itself.) We believe that this will not
cause any problems or misunderstandings. What we have in mind will always be
clear from a concrete situation, and from the circumstances in which the notations
will be used.

II1.2.4. Operations with functions. A sum of funetions f and g is a function
h such that h(z) = f(z)+g(z) for £ € D(f)ND(g). We use the notation: h = f+g.
Analogously, we define a difference and a product of functions f and g. A
uotient of functions f and g can also be defined similarly — however, its domain is
the set [D(f) N D(g)] - {z € D(g); g(=) = 0}.
The absolute value (or the modulus) of a function f is the function h defined
by the equation h(z) = |f(z)| for = € D(f). We use the notation: h = |f|.

II1.2.5. Inverse function. A function is a special type of a mapping. Just as
there are inverse mappings to one-to—one mappings, there are also so called inverse
functions to one—to—one functions. (Bear in mind that function f is said to be
one-to—one if ¥ z1, T3 € D(f) : =z # z2 = f(z1) # f(z2).) The inverse
function to function f will be denoted by f_;. Its domain is R(f), the range is
D(f) and Yz € D(f) : y= f(z) <= z = f_1(y). The graphs of the functions
f and f_, are symmetric with respect to the axis of the 1st and 3rd quadrant.

I11.2.6. Composite function. If f and g are such functions that R(g) C D(f),
we can define a function h by the equation h(z) = f(g(z)) for =z € D(g). The
function h is called the composite function (of functions f and g). We use the
notation h = fxg or h = fog. fis called the outside function and g the

inside function.

I11.2.7. Restriction of a function. Suppose that f is a function and M C D(f).
A function which is defined only on M and which assigns to each € M the same
value as the function f (i.e. f(z)) is called the restriction of the function f to the
set M and it is denoted by f|as. The set of all values of the function f on the set
M can be denoted by two symbols: R(f|y) or f(M).

II1.2.8. Bounded functions. Function f is called bounded above (or upper
bounded ) if there exists a number K € IR such that Yz € D(f) : f(z) < K. We
can define analogously a function bounded below (or lower bounded). Function f is
called bounded if it is bounded above and bounded below.

Assume further that M C D(f). Function f is called bounded above on the set
M if there exists a number K € R such that Vz e M : f(z) < K (i.e. if the
restriction f|pr is the function which is bounded above). We can similarly define
the notion of a function bounded below on the set M and the notion of a function
bounded on the set M.

111.2.9. Extreme values of a function. We say that function f has its mazimum

at the point zq € D(f) if Vz € D(f) : f(z) < f(zp). We write: f(zo) = max f.
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Analogously, function f has its minimum at the point zo € D(f) if Vz €
D(f) : f(z) = f(zo). We write: f(zp) =min f.

The maximum and minimum of function f are both called eztreme values of f.

Suppose that M C D(f). We say that function f has its mazimum on the set
M at the point zp € M if Vz € M : f(z) < f(zo). We write: f(zo) = maxy f.
Other often used denotations of maximum of function f on the set M are:
whamin

Analogously, we can also define the minimum of function f on the set M. We

‘denote it: mi i i ;
enote it: min s f, u}l‘}nf or min f(=)

Using these definitions, one can see that the following inequalities hold:
maxy f=max f|y and miny f=min f|u.

II1.2.10. Supremum and infimum of a function. The supremum, respec-
tively infimum, of the set of values of function f (i.e. of the set R(f)) is called
the supremum, respectively infimum, of function f. We use the denotation sup f
(or Lu.b. f, which means the least upper bound of f), respectively inf f (or g.Lb. f,
which means the greatest lower bound of f).

If M C D(f), then the supremum, respectively infimum, of the set f(M) is
called the supremum, respectively infimum, of function f on set M . We denote it
supy, f, sup f or sup f(z), respectively infps f, inf f or inf f(z).

M zeEM M zEM

II1.2.11. Remark. While the supremum and infimum of function f (in the whole
domain of f or only on a set M C D(f)) always exist, the maximum and minimum
of function f (in D(f) or only on M C D(f)) need not exist. This can be illustrated
on the example: f(z) =z for z € (0,1).

If max f exists then sup f = max f. Similarly, if min f exists then inf f =
min f. (The same assertions also hold for max s f, sup, f, miny f and infa f.)

II1.2.12. Monotonic and strictly monotonic functions. Let f be a function
and let M C D(f). The function f is called
a) increasingon M if Yz, za € M: 11 <za = f(z1) < f(22);
b) decreasingon M if Yz, 20 € M: 1z <z = f(z1) > f(z2);
c) non—increasingon M if Va1, 20 € M: 1z, <32 = f(z1) > f(z2);
d) non-decreasingon M if Vzi, 70 € M: 1 <zp = f(21) < f(Z2);
e) monotonic on M if f is non-increasing or non-decreasing on M ;
f) strictly monotonic on M if f is increasing or decreasing on M .
A function which is increasing on its whole domain of definition is called shortly
increasing (without a specification where). Similarly, one can introduce the notions
of a decreasing, non—increasing, non-decreasing, monotonic and strictly monotonic

function.

I11.2.13. Even, odd and periodic functions. Function f is called even (re-
spectively odd) if V2 € D(f) : —z € D(f) and f(—z) = f(z) (respectively
f(-z) = —f(z)).
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Function f is called periodic with period w if ¥z € D(f) : z+w € D(f) and
flz +w) = f(2).

II1.2.14. Remark. A function which is increasing is also non-decreasing, a de-
creasing function is also non-increasing and a strictly monotonic function is a special
case of a monotonic function. A strictly monotonic function is one-to-one (and so
an inverse function exists).

The graph of an even function is symmetric with respect to the y-axis and the
graph of an odd function is symmetric with respect to the origin. For example, the
function f(z) = #? is even and the function g(z) = z* is odd.

I11.2.15. Some elementary functions. The following functions are known from
secondary school:

a) The constant function: f(z) =c (where ce R);

b) The linear function: f(z) =kz+q (where k, g€ R and k #0);
¢) The power function: f(z) =% (where a € R);

d) The function sine: f(z) =sin z;

e) The function cosine: f(z) =cos z;

f) The function tangent: f(z) =tanz;

g) The function cotangent: f(z) =cotz;
h) The exponential function with base a (where a >0):  f(z) = a%;
i) The logarithmic function with base a (where a >0, a#1): f(z) =log, .
The functions sine, cosine, tangent and cotangent are called trigonometric func-
tions. Review for yourself the properties of these functions (i.e. their domains, ranges,
graphs, important formulas, where they are increasing, decreasing, etc., which are
their suprema, infima and possibly also maxima and minima, etc.).
A constant and a linear function are special cases of a so called polynomial
function (shortly: a polynomial). The polynomial of the n-th degree is the function

P(z) = agz" + a1z ' + a2 % + ... + @p-1Z + an

(where ag, ai, ..., an are real numbers and ag # 0.) Specially, if n =1 then P is
a so called linear polynomial, if n = 2 then it is a quadratic polynomial and if n =3
then P is a cubic polynomial.

Polynomials and all functions from the points a) — i) are often called elementary
functions.

111.2.16. Exponential and logarithmic functions. The logarithmic function
with the base a (i.e. log, z) is the inverse function to the exponential function a®.

For to reasons that we shall see later, the “most important” function of all
exponential functions is e®, where e is the so called Euler number. It is the irrational
number and its approximate value is 2.718. In addition to many other possibilities,
it can be expressed by the formula

1 n
e = lim (1 + -) .
n
Instead of e, we shall often write exp z. A logarithmic function with the base e is
called a natural logarithm and instead of log, z, we shall denote it In z.
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Fig. 14

II1.2.17. Power functions. Let us study in more detail the function f(z) = z%.
Its domain as well as its behavior depend essentially on the number a. If a is
a nonnegative integer then D(f) = R. If o is a negative integer then D(f) =
(—00,+00) — {0}. If @ is not an integer then it is usual in scientific literature to
put D(f) = (0,+00). The reason is that for o not being an integer, one can define
z% by the formula z* = exp (In %) = exp(a - In z) and In z has a sense only for
z > 0. However, for some non-integer numbers @, the definition of the function z“
can be extended in a reasonable way: For a > 0, we put 0 =0 and the domain of
z® thus becomes the interval [0,+oc0). For those @ which are rational and which
can be expressed as p/q, where p, ¢ are integers having no common factor and ¢
is odd, one can also define z® for z < 0 - we can show it for example for o = 1

and z=-8: (-8)/°={y-B=-V8=-2. 3

IIL.2.18. Inverse trigonometric functions. The function sine is not one-to—
one. Thus, an inverse function does not exist. However, the restriction of the function
sine to the interval [—m/2,7/2] is already one-to—one. The inverse function to this
restriction is called an arc sine and it is denoted arcsin. Its domain is the interval
[-1,1] and the range is the interval [—=/2,7/2]. Thus, ¥V z € [-1,1] : y =
arcsin z <= z = sin y.

Similarly, the inverse function to the restriction of the function cosine to the
interval [0,7] is called an arc cosine and it is denoted arccos. Its domain is the
interval [—1,1] and the range is [0,7]. )

The inverse function to the restriction of the function tangent to the inter-
val (—m/2,m/2) is called an arc tangent and it is denoted arctan. Its domain is
(—o00,+00) and its range is (—w/2,7/2). The inverse function to the restriction
of the function cotangent to the interval (0,x) is called an arc cotangent and it is
denoted arccot. It has the domain (—oo,+00) and the range (0, ).

Functions arc sine, arc cosine, arc tangent and arc cotangent are called inverse
trigonometric functions. Draw their graphs for yourself! These functions are some-
times also denoted by sin™!, cos~!, tan~!, cot™!, however we shall not use this
notation in this textbook.

I11.2.19. Theorem. If f is an increasing function then the inverse function f_;
is also increasing.
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An analogous theorem also holds for decreasing functions. Try to prove both theorems
(i.e. for functions increasing and decreasing) for yourself!
II1.3. Limits and continuity of a function

I11.3.1. Example. The domain of the function f(z) = (¢* —1)/z is the set
IR — {0}. The following table shows function values of f at some points z:

T —1 -0.2 [-0.06 |—0.001 | 0.001 | 0.05 0.2 1
f(z) [0.6320 [0.9060 |0.9754 | 0.9995 |1.0005 1.0254 |1.1070 |1.7182

It is seen from the table that f(z) “approaches” one as z “approaches” zero. This
fact, which we have expressed only on an intuitive level so far, can be precisely
described by means of the notion of the “limit of a function”.

I11.3.2. The limit of a function. Assume that ¢ € R* and the domain of
function f contains some reduced neighborhood P(zq). If for each sequence {zn}
in P(zo) the implication

zn = 2o => f(zn) 2 a,

is true, then we say that function f has the limit equal to a at point zo. We write:
lim f(z)=a.

T—=ZTo
e? -1

You will see later that the limit from example I11.3.1 is indeed: zl_x’nzl i 1.
0

II1.3.3. Remark. Neither the existence nor the value of the limit of function f at
the point T¢ depends on whether the point zo belongs to D(f). If zo belongs to
D(f) then the function value f(zo) does not affect the existence and the value of
the limit of f at point . The existence and the value of this limit are exclusively
given by the behavior of function f in the reduced neighborhood of point zo and
not at point xo itself!

A limit whose value is a € IR is called a proper limit. A limit whose value is
a = +00 or a = —oc is called an improper limit.

The following theorem is an easy consequence of theorem III.1.8.

II1.3.4. Theorem. Function f can have at any point xy € IR* at most one limit.

IIL.3.5. Example. Function f(z)=sin z has no limit at +oco. Actually, if it had
a limit (equal a), then for each sequence {z,} in IR the implication zn, — oo =
sin z, —+ @ would have to be true. However, for example the sequence {zn}, where
Tn = 7/2 +nm, does not satisfy this implication. This sequence has the limit +o0,
but the sequence {sin z,} (i.e. the sequence {(—1)"}) has no limit.

It would be very clumsy and inefficient always to evaluate limits from their
definition (i.e. by means of limits of sequences). For this reason we will show more
effective procedures in this chapter. The following theorem is very important. It
concerns the limit of a sum, a difference, a product and a quotient of two functions
and it can easily be proved by means of theorem III.2.13. To save space (and to
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avoid writing almost the same thing four times), we use the symbol “#” which has

the meaning of any of the symbols “+”, “~”, “.” and “/” here. (This means that
you can replace “#” by any of the symbols “+”, “=”, “.” /” and you obtain a
valid theorem.)

II1.3.6. Theorem. Let lim f(z)=a and lim g(z) =b. Then
T=To T—To
Jm (1) #0(2)] = ab

(if the expression a#b has a sense).

II1.3.7. Example.
: 2 1) =1 2 : o o
i.l_rg(&n +2 1)—31_%(33)+n171_r.nz(2z)—-1—12+4—1—15

II1.3.8. Remark. If for example 313{'2 f(z) = l_l{]l g(z) = +oco then the
g . ! . SoTn
limit zll'rgo f(z)/g(z) cannot be computed by theorem I11.3.6 because the expression

(+00)/(+00) has no sense.

II1.3.9. Remark. It can be shown that if ]im f(z)=a>0, lim g(z)=0 and
T—rTp T
g(z) > 0 for all z from some reduced neighborhood P(zp), then ].il;l fz)/g(z) =
T—Tp

+00. The limit of the quotient f(xz)/g(z) cannot be evaluated by means of theorem
II1.3.7 (because the fraction a/0 has no sense); nevertheless since f(z) approaches
the positive number a as £ — zo and g(z) approaches 0 from the right side,
i.e. from the domain of positive numbers, the quotient f(z)/g(z) approaches +co.
A similar reasoning can also be used in the case when a < 0 or g(z) < 0 for all
z € P(z).

A |
I11.3.10. Example. 31_% - g +o00 — this is the consequence of remark III1.3.9.

Some other methods and examples will be discussed in this chapter after the
notion “continuity of a function”. Moreover, the so called I'Hospital rule will be
explained in paragraph III.5.34; you will appreciate it as a useful aid for evaluations
of limits of a quotient of two functions.

II1.3.11. One-sided limits. Suppose that o € IR and the domain of function
f contains some right neighborhood Py(zq). If for every sequence {z,} in P;(zo)
the implication

Tn 239 = f(zn) = a,

holds, then we say that function f has the right-hand limit equal to a at point z,.
We write: _ljm_'_ f(x) =a.
T—rTg

One can analogously define for zp € IR the notion of the left-hand limit of
function f at point zp. We write:  lim f(z) = a.
T—To—

Comparing these definitions with the definition of the “both-sided” limit of a
function (paragraph II1.3.2), we obtain the following theorem:

II1.3.12. Theorem. Function f has a limit equal to a at the point zo € IR if
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and only if it has a right-hand limit and the left—hand limit at point zo and they
are both equal to a.

Theorems analogous to theorems III.3.4 and II1.3.7 also hold for one sided limits.

II1.3.13. Remark. We can also formulate a theorem analogous to theorem IIL.1.17
for the limit of a function. (It can also be called “the sandwich theorem”.) Roughly
speaking, the theorem says the following: If the graph of function f is closed between
the graphs of functions g and h on some reduced neighborhood P(zy) and if both
functions g, h have for x — zo the same limit equal to a, then function f also has
for £ — Ty the limit equal to a. Try to formulate and to provide a precise proof of
this theorem and the version of it that concerns one sided limits!

I11.3.14.* Remark. To conclude the part about the limits of functions, let us return
to the definition of the limit once again. There exist more equivalent definltions which
have been formulated in the process of development of the differentlal calculus. Try
to verify for yourself that the fact that z].i_.}]:ﬂ f(z) = a can also be defined in this
way:

YU(a) 3P(zo) YVzeR : z€P(zm) = f(z)€Ula),
or in the case when xo and a are numbers from IR also in the other way:

Ve>0 36>0 YVzeR: 0<|z—m|<d = |f(z)=al<e

II1.3.15. Continuity of a function — motivation. You can see graphs of
two functions in Fig. 15a and Fig. 15b. The difference between these graphs is
apparent: while the graph of function f can be drawn by one motlon of a pen,
without lifting it from the paper, the graph of function g s “disconnected” at the
point = = zo. Rather than speaking of whether the graph of some function 18 or is not
“connected” at point zo , one speaks in mathematics about the so called “continuity”
or “discontinuity” of the function at point zq.

i 4 '\._.y’-/

..'.C[] T ‘IQ z
Fig. 15a Fig. 15b

II1.3.16. Continuity of a function at the point. We say that function f is
continuous at the point zo € D(f) if
(1IL.3.1) lim f(z) = f(zo).

T—zg

II1.3.17. Remark. If you read this definition and definition IIL.3.2 carefully, you
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can see that function f can be continuous at point zo only if it is defined in some
neighborhood of zg (i.e. if D(f) contains some neighborhood U(zg)).

Function g in Fig. 15b has the right- hand limit different from the left— hand
limit at point zg; hence its “both-sided” limit at point xy does not exist (see theorem
1I1.3.12). Thus the equality (II1.3.1) does not hold and, consequently, function g is
not continuous at the point zq.

II1.3.18. Right continuity and left cbntinuity. Function f is called right
continuous (respectively left continuous) at the point zo € D(f), if
f(z) = f(zo) (respectively 2!_i“xcn__ f(z)zo = f(20))-

*—To +

The following assertion is an easy consequence of theorem II1.3.12: Function f
is continuous at point xo if and only if it is right and left continuous at this point.

II1.3.19. Example. The function y = /7 is not continuous at the point zo = 0
because it is not defined in any left neighborhood of point zy. However, this function
is right continuous at the point zq = 0.

II1.3.20. Continuity on the interval. Let I be an interval in IR which is a part
of the domain of function f. We say that f is continuous on the interval I, if

a) [ is continuous in every interior point of the interval I 4
b) f is right continuous at the left end point of I (if this point belongs to I),
c) f is left continuous at the right end point of I' (if this point belongs to I).

II1.3.21. Example. The function f(z) = 3z?+ 2z — 1 is continuous in IR. To
verify this fact, it is necessary to show that function f is continuous at each point
zg € R (because D(f) =IR). Thus, let zo be an arbitrarily chosen point from IR
and let {z,} be an arbitrary sequence of numbers from IR, such that lim z, = zo.
We need to show that lim f(z,) = f(zo), i.e. lim (372 + 2z, — 1) = 3x2 + 230 — 1.
By theorem IIL3.7 we get: lim (322 + 2z, — 1) = lim 32% + lim 2z, — lim 1 =
3-[limz,]2+2-lim z,, — 1 = 372 + 225 — 1.

It would be too laborious if we were always to investigate the continuity of a
given function in the way that we have just shown. This can be done much more
effectively for example by means of theorems II1.3.22, III.§.23 and II1.3.25.

II1.3.22. Theorem. Polynomials, trigonometric functions (i.e. the functions sine,
cosine, tangent, cotangent), inverse trigonometric functions (i.e. the functions arc
sine, arc cosine, arc tangent, arc cotangent), power function, exponential function
and logarithmic functions are all continuous functions in each interval which is a
part of their domain.

II1.3.23. Remark. If you sketch the graph of function tangent, you can see that
function tangent is continuous in each interval of the type (—w/2 + km,7/2+ k7)
(where k is an integer). Function tangent is not continuous at the points 7/2 + km

- (where k is an integer). However, this is not a contradiction with the assertion of

theorem III.3.22 because the points 7/2+ k7 do not belong to the domain of function
tangent.

59




I11.3.24. Theorem (on continuity of the sum, the difference, the product,
the quotient and the absolute value). If functions f and g are continuous at
point c, then also the functions f+g, f—g, f-g, and |f| are continuous at point
e. If, in addition, g(c) # 0 then the function f/g is also continuous at point c.

(This part of the theorem is also valid in the case when we replace “continuity
at point ¢” by “right continuity at point ¢” or by “left continuity at point ¢”.)

If functions f and g are continuous on the interval I then the functions f+g,
f—g, f-g and |f| are also continuous in the interval I. If, in addition, g(z) # 0
for all = € I then the function f/g is also continuous on the interval I.

II1.3.25. Theorem (on continuity of a composite function). If function g
is continuous at point zo and function f is continuous at point g(wo) then the
composite function f g is continuous at point zg.

If function g is continuous on the interval I, function f is continuous on the
interval J and g(I) C J then the composite function f+g is also continuous on the
interval I.

Continuous functions have many interesting and important properties. We will
show at least some of them in the following theorems. The theorems have an under-
standable geometric meaning. Try to illustrate it on appropriate figures for yourself.

II1.3.26. Darboux’ theorem. If function f is continuous on an interval I and
Ty, T3 are any two points from I then to any given number n between f(z,) and
f(za) there exists a point § between z, and z, such that f(£) =m.

1I1.3.27. Remark. The above theorem is often also called “the intermediate value
theorem”. It is logical, because the theorem says that if f is continuous on the
interval I and v, vy are its two arbitrary values in I (i.e. vy, vz € f(I)), then f
takes on every value between v; and vy in I. i

As an easy consequence of theorem II1.3.28, we can assert: If f is a continuous
function on the interval I then f(I) is also an interval or it is a one point set.
(Thus, the range of function f on I is “connected”.)

I11.3.28. Theorem (on continuity of the inverse function). If function f is
continuous and one-to—one on the interval I and f(I) = J then the inverse function
f-1 is continuous on the interval J.

I11.3.29. Theorem (on the existence of maximum and minimum). A
function which is continuous on a closed bounded interval [a,b] has its maximum
and minimum on this interval. (Thus, max f(z) and min f(z) exist.)

z€[a,b] z€[a,b]
I11.3.30. Theorem. Let function f be continuous at point zo. If f(z¢) > 0 then
there exists a neighborhood U(zo) such that f(z) > 0 for all z € U(x).

Proof: Weshow the proof by contradiction, which is simple and illustrative.
Suppose first that the theorem is not true. Then in every neighborhood U(zo),
one can find a point = such that f(z) < 0. Since U(zy) can be taken smaller
and smaller, for example U(zo) = Uyn(zo), one gets a sequence {r,} such that
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[Zn = o] A [f(zn) < 0forall n € IN]. It follows from the continuity of f at
the point z¢ that f(zn) — f(zo). The sequence {f(zn)} is a sequence of non-
positive numbers; such a sequence cannot have a positive limit. This is the desired
contradiction with the assumption f(zo) > 0. Thus, the theorem is true.

One can analogously prove that if function f is continuous at point zo and
f(zo) < O then there exists a neighborhood U(z) such that f(zo) < O for all
z € U(zo).

II1.3.31. Remark. Let us now turn our attention to evaluations of limits of
functions again. It follows immediately from the definition of the notion “continuity
at the point” (see paragraph II1.3.16) and from theorem III.3.23 that if f is any of
the functions named in theorem II1.3.23 and z; is an interior point of the domain of
f, then  lim f(z)= f(zo).

The following theorems can often be used, too.

I11.3.32. Theorem (1st theorem on limit of a composite function). Let
31_1551 g(z) = A, A€ R and let function f be continuous at point A. Then

lim f(g(z)) = f(A).

T—Tg

II1.3.33. Example. Let us evaluate l.i_r&) exp (1-z?). The inside function, i.e. the
T .
function g(x) = 1 — 22, has the limit equal to 1 at the point z = 0. The outside
function, i.e. the function f(y) = exp y, is continuous at the point y = 1 and its
value at this point is exp 1 = e. So we have: li_r&) exp(l-2%) =e.
T

I11.3.34. Theorem (2nd theorem on the limit of a composite function).
Let =ul_l'.n:'} g(x) = +oo (respectively —oo). Let _1121 fly) = L (respectively
o y=+oo

“Jim f(y)=L). Then lim f(g())=L.

II1.3.35. Remark. Theorems II1.3.32 and II1.3.34 remain valid even if we modify
them in such a way that we replace limits for £ — zo by one-sided limits, taken for
T — To+ Or T — Tp—.

II1.3.36. Example. Evaluate the limit 1_131_’. arctanz/(z—1). The inside function
T

g(z) = z/(z—1) has the right-hand limit equal to +oo, at point 1. (The numerator
z has the limit 1, the denominator £ — 1 has the limit 0 and it tends to zero from
the right, i.e. from the domain of positive numbers. Hence the limit of z/(z — 1) is
+00.) The outside function arc tangent has the limit equal to 7/2 at +o00. Hence we
obtain: =gl_i)r{1+ arctanz/(z — 1) = w/2.

II1.3.37. Example. Evaluate the limit l.i_% (sin z)/z. Let us first deal with the
E4

right-hand limit. If = belongs to a right neighborhood of 0, for example to the
interval (0,7/2), then sinz <z and z < tanz. Thus, for these =, we have:

sinz =z 1 tanz
<<, sinz _

z z z z
So the function (sin z)/x is “closed” between the function cos z (from below) and

CO8 T > COS T.
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the constant function 1 (from above) for z € (0,7/2). Since Jim cosz =1 and

1ir€+ 1 =1, we also have: l_i,'{’,l+ (sinz)/z = 1. (See remark IIL.3.13.) We can
T— z
show similarly that the left— limit is also equal to one. Applying theorem IIL3.12,
we finally get:

. singz

lim =

z—0 T

We will show another, simpler, method of evaluation of this limit in pa.ragréph
I11.5.34. (It will be based on the so called I'Hospital Rule.) Nevertheless, we regard
the procedure used here as instructive, too.

1I1.3.38. Problems. Evaluate the following limits.

0t S W I @0 o lp

d) zlil{l_ arccos T e) ,,l_i,nfl x—-:{-{z;——f:l f) 11=l_l)112 (% - x32)
g) lim ‘/i:a_—l h) lim (z® - 22%) i) lim (z° - 10z* + 155)
pimm(EE) b um YRS ) p e

m)  lim  arccotz n) :ckl-?m E%E 0) xETm z- (VT -3 - x)

Results: a)}, b)26, c)+oo, d)0, e)0, f) -3, g0, h) —oo, i) 400, j)
does not exist, k) —1, 1) does not exist, m) m, n) 0, o) does not exist.

(We will return to evaluation of some types of limits once more, in paragraphs
111.5.32-111.5.34.)

II1.4. Derivative of a function

If you are an astronomer, it is important for you not only to know the immediate
position of the objects you observe, but also to have some information about the rate
of change of this position. If you are sitting in a moving car, it is not the velocity
itself that causes the power effects you feel, but the changes in velocity. If you own
shares in a company, -it is not only today’s price that interests you, but also the
rate of change of the price - i.e. whether and how fast their value is increasing or
decreasing. These simple examples can be generalized: important information about
a function involves not only its value at one or more points, but also the rate of
change (growth or decay) of the value at a given point (or points). The necessity
to express the rate of growth or decay of a function leads to the introduction of the
notion of the derivative.

We will describe two concrete situations that lead in a natural way to the deriva-
tive of a function. However, there exist many more applications and possible inter-
pretations of this notion in miscellaneous scientific disciplines.
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II1.4.1. Geometric motivation.

The rate of change of function f at

point =g can be expressed by the slope

of the tangent to the graph of f at the

point Xg = [z, f(z0)]. How to find  f(zp+h)
this slope? We choose another, “vari-

able” point X = [zo+h, f(zo+h)] on

the graph of f. The straight line XX

has the slope f(z
0)
tenar = f(ffo+h’3-f(wu)’ ;
If there exists a limit of this expression - &\f : :
as h — 0 then the slope of the tangent Ty -Zo+h
to the graph of f at the point Xj is .
equal to its value. _ Fig. 16

II1.4.2. Physical motivation. Suppose that a mass point moves on a straight
line. The position of the mass point at time ¢ is s(t). The distance which is run by
the mass point during the time interval [fo,to + h] is s(to + h) — s(to) and so the
average velocity of the mass point in this time interval is equal to
s(to + h) — s(to) If there exists a limit of this expression as h — 0 then its
A : value is called the instantaneous velocity of the moving point
at time p.

I11.4.3. Derivative of a function. If there exists a finite limit

(III-41) lim f(zﬂ i+ h) o f(wﬂ)
h—0 h :

then its value is called the derivative of function f at the point zq and it is denoted
by f'(zo).

A function which has a derivative at point x is said to be differentiable at x;.

A function which assigns to each z € D(f) the derivative f/(z) (if the derivative
at the point  exists) is called the derivative of function f and it is denoted by f.
The domain of the function f' satisfies: D(f') C D(f). (We remind the reader that
the symbol “C" is used in such a way that it also involves the possibility “=".)

II1.4.4. Remark. If we denote = = zo+ h then we can also write the limit (IT1.4.1)
in the form
b 1@ = f(z)
T—+zo =2

If function f is given by the equation y = f(z), then the derivative of f is,
except for f’, often also denoted by the symbols

df d d
'a;! a_; f ) U’. Ey .

II1.4.5. The tangent line to the graph of a function. Suppose that zo € D(f).

If function f has the derivative k = f’(zo) at the point zy then the tangent to the
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graph of f at the point [zq, f(wo)] is the straight line which is given by the equation
y— f(zo) = k- (z — o).
II1.4.6. The velocity of motion. Let us return to the situation described in

paragraph II1.4.2. We can see that it is natural to define the velocity of a moving
mass point at time to as the derivative of the position function s at time t = to.

II1.4.7. The right derivative and the left derivative. If there exists a finite
one-sided limit
e @)= I(z0)
T—Top— T =Ty

then the value of this limit is called the left derivative (respectively the right
derivative) of function f at the point zy and we denote it by f.(zy) (respectively
by f4(zo)).

It follows immediately from theorem IT1.3.12 that f'(zg) =k <= fL(z) =
f-'i- (30) =k.

I11.4.8. Theorem. If function f has a derivative at the point zo then it is
continuous at this point.

If function f has a left derivative (respectively a right derivative) at the point
T then it is left continuous (respectively right continuous) at this point.

= — Zo

Proof: Weshow only the proof of the first part of the theorem. The proof of
the second part could be performed analogously.

It follows from the existence of the derivative f'(zg) that function f is defined
in some neighborhood U(zg). For z € P(zg), we can write: f(z) = f(zo)+{[f(z)—
f(z0)]/(z —z0) } (2 — mg). The expression in braces (i.e. {...}) approaches f'(zo)
as ¢ — zo and (z — zg) approaches 0 as z — zp. By theorem IIL3.7, we get

)+ f(w)_f(lmﬂ)‘(‘z_

T —Xg

zo) = f(mo) + f'(z0) 0 = f(zo).

Jm f(2) = f(zo
This means that function f is continuous at the point zg.
If no confusion can arise then we shall further write only z instead of .

111.4.9. Remark. As an immediate consequence of theorem III.4.8, we can for-
mulate the following assertion: Let I be an interval with end points a, b and
let a < b. Let function f be differentiable at each point z € (a,b), let there exist
fi(a) (if a belongs to I') and let there exist f' (b) (if b € I). Then function f is
continuous on the interval I.

I11.4.10. Theorem. Let functions f and g be differentiable at point x and let
¢ € R. Then the functions c¢- f, f+g, f—g and f.g are also differentiable at
point = and the following formulas hold:

a)[c- f(z) = ¢ f'(z), b)[f+g] (=) = f(z)+4'(z),

c)[f-gl (=) = fl(x)-4g'(z), d)[f-g]'(z) = f'(z)- 9(z) + f(=z) 9'(z).
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If, in addition, g(z) # 0, then the quotient f/g also has a derivative at the point
and it can be expressed by the formula:

£V _ f'@)9(@) - f(z) ¢'(x)
? {y ] (=) = 9%(z) )
Proof: Allformulas follow from (IIL4.1), We show the derivation of only one
of them, for example of the formula from item d).

[f-9)z+h) —[f-g)®) _ . Ffl@+h) g(z+h)-f(z) g(z)

01 e) = i LMD _ :
— i L@ 9(z+h) - f(z) g(z+h) + () g(z+h) - fz) g(z) _
h—0 h

= f'(z) g(z) + f(z)-9'(2).

II1.4.11. Remark. The formulas a) — e) from theorem III.4.10 are often written
down in such a way that instead of f and g, one uses the denotation » and v and
in order to simplify the formulas, one omits (z). Then the formulds have the form:
a) (e -u) =c-v, b) (u+v) =o' +v,
u)" vy —ur

d) (u-v)=vv+ur, e (; "

c) (u—v) =u -7,

II1.4.12. Derivatives of some elementary functions. Evaluating the limit in
(I11.4.1) and applying the formulas a) — e) from theorem II1.4.10, one can derive the
concrete form of the derivatives of some elementary functions:

a) [c]’ =0 (cis the constant function.) b) [z%) =a-2* ! (@€, a#0)

c) [sinz]) =cosx d) [cosz] =-sinz
e) [tanz] = (co:x)z f) [cotz]’z—@

These formulas hold at all points z from the domain of the function that appears
in the formula. The exception is formula b) in the case when o € (0,1). In this case
formula b) has no sense for z = 0.

In the following, we present the derivation of one of the formulas a) — f), for
example the formula for the derivative of the function sine.

sin(z+h) —sin z sin z - cos h+ cos z-sin h —sin z

: e A ot

Lop bl ot - h o h

= sinz - lim M + cos z - lim el =sinz-0 + cosz-1 = cosz
h—0 h h=0 h

We have used the result of example IT1.3.37 (on the limit of the quotient (sin h)/h)
and moreover, we have also used the fact that lim (cos h—1)/h = 0. This fact can
—

be verified by a method similar to that used in example II1.3.37.
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1I1.4.13. The derivative of the exponential function. It was mentioned in
paragraph I11.2.16 that of all exponential functions a® (where a > 0), the most often
used is the function e®. The reason is the following: The number e was chosen so
that for a = e, the tangent to the graph of function a® at the point z = 0 has a
slope equal to one. Hence the derivative of the function e® at the point z =0 is
also equal to one, i.e. J%1_1{‘1] (e® = 1)/h = 1. This has an important consequence for
the derivative of the function e® at an arbitrary point z:
o g TR b1

) = ln —p— = lim —5— =1 =7
Thus, the function e® has the derivative which is equal to-the function itself. It can
be shown that except for the functions of the type c-e® (where c is a constant),
there exist no other functions with this property.

111.4.14. Theorem (on the derivative of a composite function). Suppose
that the function g is differentiable at point = and function f is differentiable at
point g(z). Then the composite function y = f(g(z)) is differentiable at point z

and its derivative is
y'(z) = fg(z)) ¢'(x).

The above formula is often called the Chain Rule. The reason is that it can also
be written in the form
dy _ df dg

dz = dg dz
I11.4.15. Example. Evaluate the derivative of the function h(z) = (sin z)%.
The function h is a composition of two functions: inside g(x) = sin « and outside
f(y) = y® Thus, f'(y) =2y, ie. f'(9(z)) = 2g(z) = 2sin z. Further, one has
¢'(z) = cos z. By theorem IT1.4.14, we get h'(z) = f'(g(z)) - ¢'(z) = 2 sin z cos z.

1I1.4.16. Theorem (on the derivative of an inverse function). Suppose that
there exists an inverse function f_i to function f. If y = f_1(z) and if f has a
non-zero derivative at point y, then the inverse function f_, has a derivative at
point z. This derivative can be expressed by the formula

1 1
f’_ ) = == M
1) = P) = PO
1I1.4.17. Derivatives of further elementary functions. Applying theorems
111.4.14, I11.4.16 and already known formulas for derivatives of the functions sin z,
cos z, tanz, cotx and e®, we can derive formulas for derivatives of some further
elementary functions:
1 1

b) [arccos z] = ——

l1-z ) ] N

1 . 1
1322 d) [arccot:r:] ——m

a) [arcsinz] =

c¢) [arctanz] =
e) [111;!:]’&% f) [a®]=a"-lna (a>0)
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g) [log, z]' = (@>0,a#1)

z'lna

Formulas a) and b) are valid on the interval (—1,1), c), d) and f) are valid on
(—00,+00) and e) and g) hold on (0, +o0).

1I1.4.18. Remark. If function f has a derivative at point z and if f(z) > 0,
then the derivative of the function In f at point z can be evaluated by means of
the Chain Rule (paragraph II1.4.14):

p 1 ' f'(z)
1 SN = 1\3
o /@) = 705 f@) = L2,
The expression f'/f is a so called logarithmic derivative of function f.

II£.4.19. Example. Evaluate the derivative of the composite function h(z) =
(z + Tz —1)®" % The function h can be expressed by means of the exponential
function and the logarithmic function (compare with. paragraph I11.2.17):

h(z) = exp[ln(z?+ 7z —1)¥8 2] = exp[sinz - In(z? + 7z - 1)].

This function is defined only for those z where z2+ 7z —1 > 0. (Otherwise the
expression In (z2+7z—1) has no sense.) By solution of the inequality z2+7z—1 > 0,
we obtain: r € (-00,71) or T € (z2,+00), where z; = (-7 —+/53)/2 and
za = (=7 +v53)/2. For z € (—00,2;) or z € (z3,+00), we have:

h(z) = {exp[sinz -In(z?+7z-1)]} =
= exp'[sinz - In(z?+7z—1)]  [sinz - In(z? + Tz -1)] =

= ; ; 2x+7
=exp[sinz-In(z?+ 7z -1)]  [cos z-In(z® + Tz - 1 f—— | =
( )] [ kT =) e m2+7:c—1]
_ 2 i . 2047
- Tz —1)8n T . 2 - Sraal L
(z*+7z-1) [cosz In(z*+7zx~1) + sinz :c2+7w—1]'

IT1.4.20. Improper derivative. If the limit (ITI.4.1) exists, but its value is infinite,
then we say that function f has at point zo an improper derivative.

For example, the function f(z) =sgnz (having function values +1 for z > 0,
0 for £ = 0 and —1 for z < 0) has the improper derivative +oo at the point
zg = 0. Draw the graph of the function sgnz and verify it for yourself by evaluating
the limit (ITI.4.1). It is seen from this example that a function can have an improper
derivative at some point and it need not be continuous at this point.

If function f is continuous at point zp and has an improper derivative at this
point, then the tangent to the graph of f at point zg is a straight line perpendicular
to the z—-axis. This straight line has the equation = = zq.

The readers should be aware that it is necessary to distinguish between the
notions the derivative (the finite value of the limit (II1.4.1)) and the improper deriva-
tive (the infinite value of the limit (II1.4.1)). The notion “derivative” (without a

more detailed specification) will in the following refer only to the proper (i.e. finite)
derivative.
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I11.4.21. Differential of a function. Suppose that function f is differentiable
at point zg. Then the tangent line to the graph of f at the point [zo, f(zo)] has the
equation y = f(zo) + f'(zo) - (z — zq). (See paragraph II1.4.5.) The linear function,
defined by this equation, represents the best linear approximation of function f inthe
neighborhood of zp. The function values of f at points & from a small neighborhood
of zp can be approximately calculated:

f(z) = f(zo) + f'(20) - (z — 20)-

(Sketch a picture.) Writing = zo+ Az, we obtain: f(z+Ax) = f(zo)+ f'(z0) - Az.
The term f'(zq) - Az is a so called differential of function f at the point zp. You
can see that if zp is fixed then the differential depends on Azx. The differential is

denoted by dy or df.
One often writes only z instead of zg and dz instead of Az. Using this
denotation, we have:

f(z+dz)=f(z)+dy  where dy = f'(z) - da.

The differential is more interesting and more important in the theory of functions
of more variables.

111.4.22. Derivatives of higher orders. The derivative of the second order of
function f (we denote it f") is the derivative of the function f’. Analogously, the
derivative of the third order of function f (we denote it f’') is the derivative of the
function f”, etc.
Following this notation, the derivative of the n—th order of function f is denoted
by f (), §(O denotes the function f itself.
Domains of function f and its derivatives satisfy the inclusions: D(f) D
D) 2.0 2 DY Do
The derivative of the second order of the function y = f(z) is also often written
down in a way which is consistent with the denotation introduced in paragraph III.4.4:
d*f d? " d’y
Fpod FP Lo v, qz2
Other higher order derivatives can also be denoted and written down analogously.

111.4.23. Leibniz’ formula. The derivative of the n—th order of the product f-g
on the intersection of D(f(™) and D(g'™) can be expressed by the formula:

(f-g]™ = f™.g4 (fl") fem1 gy (g) o T O (:) feg®™,

I11.4.24. Problems. Find derivatives of the following functions. (Don't forget to
specify their domains.)

z? -1 l1+hnz
a) /T-cosz b) o c) =
d) (2 -1)(z®+2z—1) e) arcsin /T f) sin(l - cos z)
g) z° h) In(ln z) i) In(arctanz)
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j) 2%=+1 k) (3z—1)200 1) —z-cotz+ In(sin x)
m) [arcsin z)? n) (ln=z)* 0) z-sin z?
p) V2z+1
. 1 \ 2z (22 +1)— (2% - 1) 2z
Results: a)2ﬁwsz vz sinz (for z > 0), b) CESE
(forzeR), c) _1_2_5:5 (for z > 0), d)2z(z?+2x—-1)+ (z?-1)(32%+2) (for
1 1 .
z€R), e) m\/ﬁ (for zle ([1J, 1)), f)cos(l—cos z)-sinz (forz € R), g)
z, I LI
z% . (ln z+1) (forz > 0), h) e (forz > 1), i) wdtens TE1 (forsz),
j) 202z +1)-2-In2 (for z € R), k)2001-(3z—1)20%.3 (forz € R), 1) ooy
. 2 arcsin = z 1
(for sin z > 0), m) iy (for z € (-1,1)), n) (Inz)®- []_n(ln z) + E_m]

(for z > 1), o) sin 2% + 2z2.cos z? (for z € R), p) \/—2:? (for z > —1.

I11.4.25. Remark. Mastering the differentiation of functions (i.e. computation
of derivatives of functions) is one of the most important tasks in your first term of
study. It is therefore necessary to work individually on a large number of examples
on this theme. A lot of appropriate examples can be found e.g. in [NK].

II1.5. Applications of derivatives, behavior of a function

II1.5.1. Mean Value Theorem
(Lagrange’s Theorem). Let func-

tion f be continuous on the closed

interval [a,b] and let it be differ- ()
entiable on the open interval (a,b).

Then there exists a point £ € (a,b)

such that

ey - £ — f(a) f(a)

f (E) b b—a he : ; :
II1.5.2. Remark. The geometric a £ b
sense of the Mean Value Theorem is
obvious from Fig. 17. Fig. 17

I11.5.3. The interior of an interval. If I is an interval in IR, then the set of
all interior points of this interval is called the interior of I and it is denoted by I°.
Thus if for example I = (a,b] then I° = (a,d). If I =[0,1], then I° = (0,1), etc.

II1.5.4. Theorem. - Let f be a continuous function on interval I. Then the
following implications hold:
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f is increasing on interval I.

f is non-decreasing on interval I.

f is decreasing on interval I.

f is non-increasing on interval I.

f is a constant function on interval I.

a) fl(z)>0 forall zel°
b) f'(z)>0 forall zel°
c¢) f'(z) <0 forall zelI°
d) f'(z)<0 forall z€l°
e) fl(z)=0 forall z€lI°

Leeel

Proof: We present only the proof of implication a) and all other cases are
analogous. Let z; and z be two arbitrary points from I such that z; < z2. It
follows from the Mean Value Theorem that there exists a point £ € (z1,22) such
that f(z2) — f(z1) = f'(€) - (2 — 71). Since (22 —z1) > 0 and f'(§) > 0 (the
last inequality follows from the assumption of item a) ), we get: f(z2) — f(z1) >0,
or f(z1) < f(zz). This means that function f is increasing on the interval I.
(Compare this with item a) from paragraph I11.2.12.)

IIL.5.5. Remark. Students often make the following mistake: They forget that
theorem IT1.5.4 holds on an interval and they find out that f is continuous for
example on two intervals (—oco,—1] and [1,+o00) and moreover, f' > 0 in the
interior of both these intervals. Then they conclude that function f is increasing
on the union (—o00,—1]U[1,+00). However, this need not be true! — see e.g. the
function f(z) = #® — 3z. (Sketch the graph of this function for yourself!) It follows
from theorem IIL.5.4 that f is increasing on each of the intervals (—oo,—1] and
[1,+00) only. There is no reason for f to be continuous on the union (—oo,-1]JU
[1, +o0)!

IIL.5.6. Local extreme values of a function. Suppose that function f is defined
in some interval (a,b) containing point zo. We say that f has a local mezimum
(respectively a local minimum) at point zo if there exists a reduced neighborhood
R(zo) such that Vz € R(zo) : f(z) < f(zo) (respectively V& € R(zo) : f(z) 2
flza) ).

If we replace the inequalities “<” and “>” by the sharp inequalities “<”
and “>”, we get the definitions of a so called strict local mazimum, respectively a
strict local minimum.

Local maximum and local minimum are called local extreme values. Strict local
maximum and strict local minimum are called strict local extreme values.

IIL.5.7. Remark. Obviously, strict local extreme values are special cases of local
extreme values.

To distinguish between extreme values of function f on its whole domain (de-
fined in paragraph II1.2.9) and local extreme values, we often call a maximum (re-
spectively a minimum) of function f (in D(f)) an absolute mazimum (respectively
an absolute minimum), or sometimes a global mazimum (respectively a global mini-
mum).

The next theorem plays a fundamental role in the investigation of the local
extreme values.

I11.5.8. Theorem. If function f has a local extreme value at point zo and if f
is differentiable at this point then f'(zo) = 0.
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Proof: Weshow the proof by contradiction. Suppose that f has a local extreme
value at point zp, and that the derivative f’(zq) exists, but it is not equal to zero.
Without loss of generality, we can assume that, for example, f'(zg) > 0. We are
going to show that this is not possible.

It follows from the inequality f’(zo) > O that there exists a > 0 such that
'p_%[f(zo+h)—f(zo)]/h =a > 0. Thus, for each sequence {h,} in D(f) such that

hn — 0, it holds: lim|f(zo + hn) — f(z0)]/hn = @ > 0. This means (by definition
II1.1.4) that to every U(a) there exists ng € IN such that for n € IN, satisfying
the inequality n > ng, it holds: [f(zo + hn) — f(zo)]/hn € U(a). If we choose
U(a) = (0,2a) and put h, = 1/n, we get: 0 < [f(zo + 1/n) — f(zo)]/(1/n) <
2a. Using only the first part of this inequality (i.e. 0 < ...), we can see that
f(zo+ 1/n) > f(zo) for n > ng. However, this means that function f cannot
have a local maximum at point zp. Similarly, by the choice h, = ~1/n, we can
show that function f cannot have a local minimum at point zg, either. This is the
desired contradiction.

This proof is quite instructive. Sketch a graph of a function which has a positive
derivative at some point o and follow all steps of the proof in your figure!

IIL.5.9. Remark. Remember that the condition f'(zp) = 0 (if the derivative
f'(zo) exists) is only a necessary condition for the existence of a local extreme value
of function f at point zo, but it is not a sufficient condition. This can be illustrated
for instance by a simple example: Function f(z) = z® has a zero derivative at the
point zg = 0. Nevertheless, it does not have a local extreme value at this point !

II1.5.10. More about the local extreme values. The only points where function
f can have a local extreme value in an interval I are

1) interior points of interval I where f' is equal to zero (see Fig. 18a),
2) interior points of interval I where f’ does not exist (see Fig. 18b).

Fig. 18a Fig. 18b
The word “can” is stressed because function f can, however does not necessarily need,
have its local extreme values at the mentioned points. This follows from theorem
I11.5.8 and remark IIL.5.9.
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How to find the local extreme values of function f.

a) We find all points where f’ equals zero or f’ does not exist. These are the only
points where function f can take on a local extreme value.

b) We need to check whether function f really has a local extreme value in these
points and to specify whether it is a local maximum or a local minimum value.
We can apply one of the following procedures:

bl) Denote by zg one of the points from item a). Assume that f is continuous
at the point zg. (This follows e.g. from the existence of the derivative - see
theorem II1.4.8.) If we find out, for instance, that f is increasing in some
left neighborhood of zp and decreasing in some right neighborhood of zg
then f obviously has a strict local maximum at the point zo. (Sketch a
picture.) On the other hand, if f is decreasing in some left neighborhood
of g and increasing in some right neighborhood of =y then f has a strict
local minimum at z. 5

b2) To recognize whether function f has a local extreme value at point zo and
what is its type, one can also apply theorem II1.5.19. (You will see it later.)
Theorem II1.5.19 uses the sign of the second derivative of f at the point .

I11.5.11. Example. Find local extreme values of the function f(z) = z?e".

The domain of the function f is the interval (—oco,+0c0) and f is differentiable
at each point of this interval. Thus, if f has a local extremum at some point o,
then it must be a local extremum of type 1) from remark II1.5.10. So it must be
f'(zo) = 0. f' can easily be expressed: f'(z) = 2ze® +z%e® = (2+1x)ze®. We
put it equal to zero and we get the equation (2 + z)ze® = 0. This equation has
two roots: z; = —2, 3 = 0. This means that the points —2 and 0 are the only
points where f can have a local extremum.

We can apply e.g. the procedure from item bl) in the previous paragraph to
check whether the function f really has a local extremum at some of the points
—2, 0 and moreover, what kind of local extremum it is. Solving the inequality
f'(z) = (2+z)ze® > 0, we obtain: z € (—oo0,—2) or z € (0,+00) and similarly,
the inequality f'(z) = (2+ z)ze® < 0 is satisfied for z € (—2,0). Thus, the
derivative f’ is positive on the intervals (oo, —2) and (0,+00). Due to theorem
I11.5.4, function f is increasing on each of these intervals. f’ is negative on the
interval (—2,0), so f is decreasing here. Since f is continuous at the point —2,
increasing on its left neighborhood and decreasing on its right neighborhood, it has
a strict local maximum at the point —2. Similarly, f is continuous at the point 0,
decreasing on its left neighborhood and increasing on its right neighborhood, so it
has a strict local minimum at the point 0.

IT1.5.12. More about the absolute (=global) extreme values. The only
points where function f can have an absolute extreme value in an interval I are
1) interior points of interval I where f’ is equal to zero (see Fig. 19a),

2) interior points of interval I where f’' does not exist (see Fig. 19b),

3) endpoints of interval I (if interval I is not open - see Fig. 19¢).
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Fig. 19a Fig. 19b Fig. 19¢

How to find the absolute extreme values of function f on interval I.

a) We find all interior points of interval I where f' equals zero or f' does not
exist. We add the endpoints of I (if the interval I is not open). These are the
only points where f can have an absolute extreme.

b) If we are sure that the absolute extreme values maxy f and min; f exist then
we calculate the values of f at the points from item a). The greatest one is
maxy f and the least one is miny f.

The knowledge about the existence of the absolute extreme values of function
f in interval I follows e.g. from theorem III.3.29. (It says that if interval I
is bounded and closed and function f is continuous in I then the absolute
extreme values of f in I exist.)

If the assumptions of theorem II1.3.29 are not fulfilled then one has to apply a
finer analysis that can vary case from case in order to check whether function f
has the absolute extreme values in interval I. It can happen that the absolute
extreme values (or at least one of them) do not exist. (See also remark IT1.2.11.)

I11.5.13. Example. f(z)=z?+ 3—5 -16, I=[1,4]

Find absolute extreme values of the function f in the interval I (if they exist).

Solution: [1,4]is a bounded and closed interval. The function f is continuous in
this interval. (It is obvious that f is continuous in (—o0,0) U (0,+00).) Thus, by
theorem II1.3.29, the absolute extreme values max(; 4) f and min(; 4) f exist.
Function f is differentiable at all points = € [1,4] and its derivative is

flz) = 2z - ::—2 ;
The equation f'(z) = 0 has a unique root: z = 2. Adding the endpoints of the
interval [1,4], we obtain the set: z; =1, z2 = 2, z3 = 4. These are the only
points where function f can have the absolute extreme values in the interval [1,4].
The function values at these points are: f(z;) = f(1) =1, f(z2) = f(2) = —4,
f(z3) = f(4) = 4. The least of them is —4 and the greatest of them is 4. Hence
maxrj 4] f = f(2) = —4 and m.in[]_,‘] _f = f(4) =4,

II1.5.14. Functions concave up and concave down. Function f is called
strictly concave up on set M if M C D(f) and if for each three points z;, z2, z3 €
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M such that z; < z3 < z3, it holds that: The point Q2 = [z2, f(z2)] is below the
straight line Q; Q3, where Q1 = [%1, f(z1)] and Qs = [z, f(z3)].

If we replace the word “below” by the word above in this definition, we gain a
definition of a function which is strictly concave down on the set M.

Analogously, replacing the word “below” by the words below or on (respectively
above or on), we get the definitions of a function concave up on the set M (respec-
tively concave down on the set M).

You can see examples of functions that are strictly concave up and strictly con-
cave down in Fig. 20a and Fig. 20b.

T T T3 I T2 I3

Fig. 20a Fig. 20b

II1.5.15. Remark. A function strictly concave up is a special case of a function
concave up and a function strictly concave down is a special case of a function concave
down.

I11.5.16. Remark. The condition saying that @, = [z3, f(z2)] finds itself below
the straight line Q; Q3, where @, = [z1, f(z1)] and Qs = [z3, f(z3)], can be
computatively expressed by the inequality

f6) < oy ¢ LE i) |
Ty

Iy — .
i (22 — 1)

I11.5.17. Theorem. Let function f be continuous on interval I. Then the follow-
ing implications hold:

a) f"(z) >0 forall x€I°> = [ isstrictly concave up on interval I.

b) f"(z)>0 forall z€I® = f isconcave up on interval I.

c) f"(z)<0 forall z€I° = [ isstrictly concave down on interval I.

d) f"(z)<0 forall z€I° = [ is concave down on interval I.

e) f"(z)=0 forall z€I° = f isa linear function on interval I.

I11.5.18. Remark. We omit the proof of theorem IIL.5.17. Nevertheless, in order
to help toward a better understanding of the theorem, we sketch at least its main
idea. Let us for instance deal with item a). f” coincides with the first derivative
of the function f’. Soif f” > 0 on I°, f' is increasing on I°. This means that if
we move in interval I from left to right, the tangent to the graph of f changes its
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direction — it slants in such a way that its slope increases. However, this is possible
only in the case when function f is concave up on interval I. (Think this over by
means of Fig. 20a.)

Let us now return to the question how to specify the type of a local extreme
value — see also example III.5.11.
I11.5.19. Theorem. If f'(zp) =0 and f"(zq) > 0, then function f has a strict
local minimum at point zg.

If f'(zo) =0 and f"(zo) < 0, then function f has a strict local maximum at
point zg.

II1.5.18. Remark. The proof of theorem III.5.17 is also omitted. However, the

~ following consideration can contribute to its understanding: Suppose that f'(zo) =

0, f"(zo) > 0 and to exclude complicated cases, suppose in addition that the second
derivative f" is continuous at point zg. It follows from the inequality f"(z) > 0
that there exists a neighborhood U(zg) such that f”(z) > 0 for all z € U(zo).
(We have used theorem II1.3.30.) This means (by theorem IIL.5.17) that function
f is strictly concave up in the interval U(zo). This information together with the
equality f'(zo) = 0 leads to the conclusion that f has a strict local minimum at
point zo. (Sketch a picture.)

I11.5.21. Example. We find local extreme values of the function f(z) = 2z® +
3z% — 36z +4. The domain of f is the interval (—oco,+00) and the function f is
differentiable at each point of this interval. Hence it can have the local extreme values
only at those points where the derivative is equal to zero. (See remark IIL.5.10.)
The derivative of f is: f/(z) = 62 + 6z.— 36. Solving the quadratic equation
622+ 6z — 36 = 0, we obtain the points z; = —3 and z; = 2. The second derivative
of the function f is: f”(z) = 12z + 6. Substituting the values of z; and z3 to
f"(z), we find out that

a) f"(z1)=f"(-3)=12-(-3)+6 = —30 < 0. Thus, function f has a strict
local maximum at the point —3.

b) f"(z2) = f"(2) =12-2+4+6 = 30 > 0. So function f has a strict local
minimum at the point 2.

II1.5.22. Remark. If we replace the inequality f”(zg) > 0 by the inequality
f"(z¢) > 0 in the assumptions of theorem III.5.19, ther it is not true that we can
also replace a “strict local minimum” by a “local minimum” in the statement of the
theorem, and the theorem remains valid. On the contrary, the inequality f"(zo) = 0
admits the possibility f”(zo) =0 and the equalities f'(zo) =0 and f"(zp) =0 do
not allow us to draw any conclusion about the extreme values of function f at point
zo! Think this over in connection with three simple examples: 1) f(z) = z*, 2)
f(z) = —z*, 3) f(z) =2 Put z¢ =0 in all three examples.

I11.5.23. Point of inflection. Suppose that function f is differentiable at point
zp (and, consequently, there exists a tangent to the graph of f at the point

[zo, f(z0)]). The tangent divides the z, y plane into two half-planes. If the tangemt
passes from one half-plane to the other at the point [ zg, f(zo)] then xp is called the

point of inflection or the inflection point of function f.
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II1.5.24. Example. 0 is a point of inflection of the function f(z) = 2z +1. Sketch
the graph of this function and the tangent to the graph at the point [0, f(0)] = [0,1]
for yourself.

I11.5.25. Theorem. If o is an inflection point of function f and if the second
derivative f"(zo) exists, then f"(zo) =0.

IIL.5.26. Remark. If f”(zo) exists then the condition f"(zo) = 0 is the necessary
condition for o to be an inflection point. However, it is not a sufficient condition!
This means that it is not possible to overturn theorem 111.5.23 and to assert that the
equality f”(zo) = 0 implies that zo is the inflection point. It is evident from the
example f(z) = £*. This function has the second derivative equal to zero at the
point 0, but in spite of this 0 is not a point of inflection of f.

Thus, if we find for a given function f points where f has the second derivative
equal to zero, we have only “appropriate candidates” for points of inflection. Then
it is necessary to use some other means to find out whether these points are really
inflection points. The following theorem. is a useful tool.

IIL.5.27. Theorem. If f'(zo) =0 and f"(zo) # 0, then o is an inflection
point of function f. .

II1.5.28. Example. We find inflection points of the function f(z) = exp (—z®).
Differentiating the function f, we get: f'(z) = —2z exp (—=?) and f'(z) =2 (22—
1) exp (—z2) for all z € (—00,+00). Thus, if f has points of inflection, the second
derivative of f must be equal to zero at these points (by theorem II1.5.22). Thus we
need to solve the equation f”(z) =0, ie. 2(2z%-1) exp (=z?) = 0. This equation
has two solutions: zy = —1/v/2 and z3 = 1/v/2. Differentiating the function f
once more, we obtain: f"(z) = 4 (3z—22°) exp (—z?). Substituting here the values
of z; and x3, we find out that

a) f"(z1) = f"(~1/v2) = —8/v2 - exp(=0.5) # 0, hence the point z; is the
inflection point of the function f (by theorem 111.5.25).

b) f"(z3) = F"(1/V2) = 8/V2 - exp(-0.5) # 0, so o is also the inflection
point of the function f. (This follows again from theorem I11.5.25.)

Q”/
y=kz+g /

Fig. 21a Fig. 21b

Ty

111.5.29. Asymptotes to the graph of a function. The straight line y =
kz + g is a so called slant asymptote to the graph of function f as z — —oo if
Jim [f(z) - kz - q]=0.
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Similarly, the straight line y = kz + ¢ is a slant asymptote to the graph of
function f as z — +oco if lim [f(z)—kz —q]=0.
z—+00
The straight line = =z, is called a vertical asymptote to the graph of function
f at point z if at least one of the one-sided limits of f at point zg is infinite.
An example of a slant asymptote to the graph of function f as £ — +oo is
seen in Fig. 21 a, and an example of a vertical asymptote is shown in Fig. 21b.

1I1.5.30. Theorem. The straight line y = kz + ¢ Is a slant asymptote of the
graph of function f as z — +oo if and only if

im 18

m = and zlérfm [f(z)—kz] = q.

(The theorem is also valid in the case when +oc is everywhere replaced by —oo.)

II1.5.31. Behavior of a function. To investigate the behavior of a function, you

can follow this strategy:

a) Specify the domain of f (if it is not already given).

Find out whether the function is even, odd, periodic.

Find 1nterya.ls of continuity, points of discontinuity and evaluate one-sided limits
at end-points of intervals which form the domain of f (possibly also at points
of discontinuity of f).

_Find points where the graph of f crosses the z—axis, the y-axis, and specify
intervals where f is positive, respectively negative.

b) and the derivative of f. (Don’t forget about the domain of the derivative!)
Find maximum intervals where the function is monotonic and specify the type
of monotonicity (i.e. whether f rises or falls).

ijd local extreme values of f. (To specify their type, you can possibly use the
sign of the second derivative.)

¢) Find inflection points of f.

Find maximum intervals of concavity of the function f.

d) Find asymptotes of the graph of f.

Sketch the graph of f.

3
4—z?
a) D(f) = (-00,-2) U (-2,2) U (2,+0c0) (the denominator of the fraction cannot

be equal to zero). The function f is odd because for all z € D(f), it holds:
-z € D(f) and f(—z) = —f(z). Hence the graph of f is symmetric
with r'espect to the origin of the coordinate system. We can therefore study the
!)ehavmr of f only on the set [0,2) U (2, +00). Information about its behavior
in th(? set (_—oo, —?) U (=2,0] will follow from the mentioned symmetry. The
function f is continuous in D(f). (It is a quotient of two continuous functions
and the function in the denominator is different from zero in D(f).) It holds:

f(0) =0,
lim f(z) = lim

52— 32— 4 — xz

I11.5.32. Example. We investigate the behavior of the function f(z)=

3 3

. T
= 400 lim f(zr)= lim —— = —
! T2+ f(z) z—2+ 4 — 2 00
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b)

d)

2@ _ g _to
= etw @) -1 -1

lim f(z) = lm

T—+00 z—o+o0 4 — 32
3

rer- i
flz)>0 <= z€(0,2),

f@) =0 «
flz) <0 <= =z¢€(2+00).

322 (4 - 2?) — (-2z)a® _ #?(12-12?)
(4-z2)? T (4-a?)?’

The derivative of f is: f'(z) =
D(f") = D(f), ” 2
T z(12-2

fllz) =0 <= ‘—“‘“'“_(4_,;2)2
flz)>0 < z€(0,2)U (2,2v3), f(2)<0 <= z€(2V3,+00).

This means that f is increasing on the interval [0,2) and on the interval
(2,2v/3] and decreasing in the interval [24/3,+00). There is a strict local max-
imum at the point 2v/3 and f(2v/3) = —3v/3. Although the derivative of f
is equal to zero at the point 0, f has no extreme value at this point. Namely,
it is increasing on the interval [0,2) and due to the fact that it is odd, it is also
increasing in the interval (—2,0]. Thus, f is increasing on the interval (—2,2).

=0 « z=0 or z=2V3,

The second derivative of f is:

(@) = [f'@)] =

_ (2z—42®) (42?2 -2(4-2%) (-22) (1227 —2%) _ 8z (12+ z?)
B (4 —z?)* T o(4-=23
D(f") = D(f') = D(f),

" _ 8z (12 + z?)

fllz)=0 <= A=z
f'lz) >0 <= z€(0,2), ff(z) <0 < =z € (2+00).
This implies that the function f is strictly concave up in the interval [0,2) and
strictly concave down on the interval (2,+00). 0 is the inflection point — this
follows from the strict concavity up of f on [0,2) and the strict concavity down
of f on (—2,0]. (The second is a consequence of the symmetry of f )

=0 < z=0,

Since f has at the points —2 and 2 infinite one-sided limits, the straight lines
z = -2 and z =2 are vertical asymptotes of f.

Let us now investigate a slant asymptote of f as z — +00. We use theorem
I11.5.28 and we evaluate limits from this theorem:

3

: f(z) . T
A = i — = — =
2 sl sgemeciek
3
7 ;. T Y el
S ] = e (el e I e fm e

Hence the straight line y = —z is a slant asymptote of the graph of f as
T — +oo. Similarly, we can find out that the straight line y = —z is also a slant
asymptote of the graph of f as ¢ — —oo.

You can see the graph of f in Fig. 22.
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Fig. 22

II1.5.33. Problems. Investigate the behavior of the functions
8) f(z)=2**-g, b) f(z)=z-exp(l/z), ¢) f(z)=2-exp(~2?),
d) f(z)=2z%/(z*-4), e flx)=223+3z>—12z+7.

'].I‘he t'_ollo.win,g‘theorem is a useful aid in computations of limits of quotients of two
functions in situations where the computation leads to so called indefinite expressions
0/0 or +oo/ + oo.

I‘II.5.34. Theorem (I'Hospital’s Rule). Suppose that ¢ € R* and the limits
l.l_la f(z) and 1.1_.1::.}: g(x) are either both equal to zero or are both infinite. Then

o f@) _ o (=)
@) T gy
if the limit on the right- hand side exists.
(The same assertion also holds for the right-hand limits and the left-hand limits.)

II1.5.35. Remark. Inother words, the ’'Hospital Rule says that if the computation
of the limit of f(z)/g(z) (as £ — c) leads to the indefinite expression 0/0 or
:i':oo/ =+ 0o and if there exists a limit of f'(z)/g’(z) (as = — c) then the limit
ll_l'ﬂ f(z)/9(z) allsq exists and both limits have the same value.

The assumptiox\i\conceming the existence of the limit lim f'(z)/¢'(z) is im-
T—C
l?or_ta.nt., because there are known cases when this:limit does not exist, while the
limit i‘l—ié f(z)/g(z) does exist. Clearly, its value cannot be found by means of the
I’Hospital Rule in‘sucl# a case.

\ R
II1.5.36. Example. | Evaluate the limit lﬂ% (tanz)/z. The limit of the quotient

.(tana:) /:s cannot.l be expressed as a quotient of limits, because this leads to the
indefinite expression 0/0. However, the limit of the quotient of the derivatives is:

. 2
- (ta.n'.'t) - 1/(cos z)?) = lim _r _1_ 1.
zhm_.o — ,hm_,o 1 20 (cos x)? 12
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Hence lirr:) (tanz)/z also exists and it is also equal to 1.
T—

1I1.5.37. Example. We show the application of the ’'Hospital Rule once again,
but this time more briefly:

. T—singz . l—cosz . sinz . cosSI 1
hm—a'—:hm—2=hm = lim = =.
z—0 T z-0 3z z—=0 6z z=0 6 6

(We have used the ’'Hospital Rule three times here.)

II1.6. The osculating circle, Taylor’s theorem

II1.6.1. Motivation. Suppose that function f is differentiable at point zo, i.e. it
has a derivative f'(zg) at point zo. Denote yo = f(zo). You already know that the
tangent line y — yo = f'(zo) - (z — To) represents the best possible approximation of
the graph of function f in a neighborhood of the point [0, yo] of all possible straight
lines.

In applications, we are often in a position that we wish to find the best approx-
imation of the graph of function f in the neighborhood of the point [z0, yo), however
the class of curves we can use consists not of all possible straight lines, but e.g. of all
possible circles. This problem is studied in the next paragraph.

II1.6.2. The osculating circle, curvature. Suppose that function f has a second
derivative at point zo. (Then, certainly, f'(zo) also exists.) Denote for simplicity
yo = f(@o), y1 = f'(z0) and y2 = f"(z0).

Let us solve this problem: Find the circle (z — 24)? + (y — ¥5)? = r?, which
represents the best approximation of the graph of function f in the neighborhood of
the point [zg, yo). The circle with this property is called the osculating circle to the
graph of f at the point [zo,yo]. Its center is called the center of curvature and its
radius is a so called radius of curvature.

The circle can be considered to be the graph of a function y(z). The requirement
of the best coincidence with the graph of function f in the neighborhood of [zo, yo]
can be satisfied in such a way that we want function y(z) to have the same value as
function f at point zo and moreover, to have the same first and second derivative as
function f at point zo. Thus, we obtain the conditions

y(xo) =0, V(o)=w0 ¥'(z0) =10
Naturally, function y(z) must also satisfy the equation of the circle
2 2
(IIL.6.1) (z—zs)" + (v(@)—ws)” = 2.

in the neighborhood of the point [zg, o). Substituting = =z and y(z) = yo, we
obtain the equation

(I11.6.2) (zo—T5)* + (Yo —ys)? = 2.
If we differentiate equation (II1.6.1) with respect to z and substitute z = zo, y(z) =

yo and y'(z) = yp, we get

80

R n_____.._é

(111.6.3) 2(zo—s) + 2(yo—s) - ¥p = 0.
Differentiating (II.6.1) two times with respect to z and substituting z = o, y(z) =
Yo, ¥'(z) =yp and y"(z) =y, we obtain
(I1L.6.4) 2+ 2957 + 2(Wo — va) ¥ = O.
Equations (II1.6.2), (I11.6.3) and (II1.6.4) form a system of three equations for three
unknowns: T, ¥, and r. Solving this system, we get the formulas:
r= (1+yp%)3/?
ol
II1.6.3. Taylor’s theorem — a motivation. Assume that function f has deriva-

tives up to the order n (inclusively) at point zo. We look for a polynomial T, of at
most n—th degree which has the form

1+yp° 1+ yp”
ygn ’ Ys =Y0 + ygo ’

7173:-'50_9;)

To(z) = ap + a1+ (T —z0) + a2:(z—20)® + ... + an-(z—z0)™

and which is the best approximation of f in the neighborhood of zo. The require-
ment of the best approximation is realized in such a way that we want T}, to satisfy:

Ta(zo) = f(z0), Ti(z0) = f'(z0)y T!(mo) = f'(®a) ..., Ti”(wo) = f™(zo)-

These are together n + 1 conditions. Substituting here the general form of Ty, , we
can express by a simple calculation n + 1 coefficients ao, a1, a2, ..., @n:

4 " (n)

The polynomial T;, with these coefficients, i.e. the polynomial

! " (n
To(e) = floo) + L8 @ o zg) + L8 (o g 4.4 L) gy

ﬂu=f(c), a =

is called Taylor’s polynomial of the n—-th degree of function f at point zg. In the
case that zo = 0, this polynomial is also often called Mac Laurin’s polynomial of the
n-th degree of function f.

It cannot generally be expected that the equality f(z) = Tn(z) holds quite
exactly at the points z # zo. Thus, if we use the, polynomial T,(z) instead of
f(z), we make a certain error. Let us denote it by Rp41(z). The following theorem
provides information that Rn41(z) can be expressed in a certain form. This form
can later be used to estimate the magnitude of Rni1(z).

II1.8.4. Taylor's Theorem. Let function f have derivatives up to the order
n+1 (inclusively) at each point of interval (a,b) and let xo € (a,b). Then to every
z € (a,b) there exists a point £ between z and zp such that

(I11.5.1) f(z) = Tu(z) + Rny1(2),
where
(n+1)
(I11.5.2) Rosi(z) = __f( n..i 1()5!) (z — z)™ 1.
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II1.6.5. Remark. Formula (IIL5.1) is called Taylor’s formula. It can also be
written in the form

!(z0) " (n)
1@ = fleo) + L8 @ 20) + LEV @z 44 L (g

+ Rn+1 (.’E).
The term Ry+:1(z) is called the remainder after the n—th term in Taylor’s formula.
There are more possible ways of expressing the remainder. Formula (ITL.5.2) presents

the so called Lagrange form of the remainder.
If z5 =0 then formula (IIL.5.1) is also called Mac Laurin’s formula.

IIL.6.6. Example. Mac Laurin’s formula for the function f(z) = e® has the
concrete form

) v " ef gnil
z z =2
e =1 + % tg et gt Rnii(z),  where Rnyi(z) = (n+ 1)

Mac Laurin’s formula for the function sine and for n = 2m, where m € IN, has the

:
form
3 5 7 p2m-1

T z T _qym=1
§+-5—!-.—‘ﬁ+...+( 1)
where  Rame1(z) = (=1)™ (cos €)/(2m + 1)! - z?™+1,
Mac Laurin’s formula for the function cosine and for n = 2m + 1, where m € IN,
has the form

1 + R’Jm+1($)s

sing = z — m

2 4 6 2m
x T T —1\ym = R T
atrg -t T @m) e

where  Rym42(z) = (=1)™+! (cos £)/(2m +2)! - 2™ 2.

II1.6.7. Example. Using Mac Laurin’s formula for the {unctiog f_("”) = €%,
evaluate the Euler number e with a maximum error 10~2. The substitution z = 1
into the expression of e® in example IIL.6.6 yields:

cosz = 1 —

&
1 1 1 N
exlt+ sttt Fgt Rn41(1), where  Rn1(1) (n+1)I°

The only information we have on ¢ says that it is a number from the interval (0,1).
We can now ask how large n must be so that | Rp41(1)| < 1072, Since 0 < ef <
e' < 3, we have:
et 3
|'Rﬂ+1(1)¥ = (ﬂ+1)! < (ﬂ+1)!-

By a simple calculation, we find that the choice n = 5 is satisfactory, because
3/(n+1)! = 3/6! = 3/720 = 1/240 < 10~2. This means that the number e can be
expressed with an error less than 10~2 in the following way:

. 1 1 1—1 1 1+1+L+“}—=§§E
e=l+ gtgt .ty =1l+l+s+g+ogt 10~ 1m0
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II1.7. Parametric representation of functions

IIL.7.1. Motivation. It often happens in miscellaneous computations that we
seek for a function y = f(z), however, we do not find it in an explicit form, and
instead we obtain separate expressions of z and y in dependence on a parameter.
For instance:

(IIL.7.1) zg=1, y=3t-1; te(—o0,+00).

There arise natural questions: How to recognize whether equations (II1.7.1) really
define a function y of the variable z? What is its domain, its range, its behavior,
etc. 7 Let us first study these questions on a general level. We therefore suppose that
we have general equations

(II1.7.2) z = (1), y = ¥(t); te M

instead of the concrete equations (III.7.1). If function ¢ is one-to—one in set M
then it takes on each value z at a unique point ¢ € M. Thus, there exists a unique
value y = 9(t) that corresponds to x. This recipe defines a function which assigns
to every z € R(yp) a value y € R(¢).

Conversely, if function ¢ is not one-to—one in set M then it takes on some value
r at least at two different points t;, to € M. There exist two values y; = 9(t;) and
¥2 = 1(t2) that correspond to z in this way. The values y;, yo can be the same
in extraordinary cases, though this cannot be generally expected. The assignment
T~ y, defined in this way, need not be a function because it can assign more than
one value of y to a single value of z.

II1.7.2. Parametric representation of a function. Assume that functions
i, ¥ are defined in set M and function ¢ is one-to-one. Then equations (IIL.7.2)
define a function f which expresses the dependence of y on z. Its value f(z) can
be obtained as follows: As function ¢ is one-to—one, there exists an inverse function
-1 and the equality x = ¢(t) is fulfilled if and only if ¢ = y_,(z). Substituting
this for ¢ in the equation y = y(t), we get: y = f(z) = ¥(p_1(z)).

The domain of the function f is a set of all & such that t € M can be expressed
in the form ¢ = ¢_;(z). Obviously, this is the set D(¢_,), which is identical wit
R(p). Thus, D(f) = R(yp). : ‘

The range of f is the set of those y which can be expressed in the form = (t)
for some ¢ € M. This is the set R(y). Thus, we have: R(f) = R(). L R

Function f is said to be defined parametrically by equations (I11.7.2), 4_§;gyations
(IIL.7.2) are called the parametric representation of function f. Pl

II1.7.3. Remark. The explicit presentation of the dependence. of: Yy on z, ie.
y = f(x) = ¢¥(p-1(z)) mostly cannot be used in practice because the lnyerse function
®-1, although it exists, cannot be reasonably expressed by a formula, (The example:
p(t) =e* +1t; t € (—00,+00).)

IT1.7.4. Remark. The following consideration can contribute tq,..h];%p.ndersta.nding
of the notion of a function which is defined parametrically: Equations (IT1.7.2)
describe a curve C' in the plane IE;. C consists of all points [@,y] = [¢(t),%(t)]
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for t € M. If function { 1§ one-to—one then there cannot exist two different points
[z,y1] and [z,y3] on C with the same first and different second coordinates. This
means that the curve €' can be regarded as a graph of a function y of the variable
z. That function which is defined parametrically by equations (IIL7.2).

Conversely, if function ¢ is not one-to—one then C' need not be a graph of any
function y of the, variable z. This is the case of the function = = ¢(t) = t? from
equations (I11.7.1). This function ¢ is not one-to—one in the interval (—oo,+00).
The curve C described by equations (II1.7.1) is a parabola with the equation z =
% (y+1)%. (We can easily get this equation if we express ¢ from the second equation
in (IIL.7.1) and use this ¢ in the first equation.) Sketch this parabola for yourself!
The axis of the parabola is the straight line y = —1. It is obvious that the parabola
is not a graph of a function y of the variable = and consequently, equations (IIL.7.1)
are not a parametric representation of such a function.

The function z = (t) = t* is not one-to—one in the interval (—o0,+00).
Nevertheless, it is one-to—one in each of the intervals Iy = (—o00,0] and I =
[0,400). Hence the equations (IIL.7:1) define parametrically a function y = fi(z)
if we take t € I; and they define parametrically another function y = fao(z) if ¢
is taken only from I;. The graph of f; is the lower branch of the parabola z =
3 (y+1)? (corresponding to y < —1) and the graph of f; is the upper branch of
the parabola, corresponding to y > —1.

I11.6.7. Theorem (on continuity of a parametrically defined function). Let
M be an interval, let functions ¢ and ¢ be continuous on M and let function ¢
be one-to—one in M. Then the function y = f(z), which is defined parametrically
by equations (IIL.7.2), is continuous on its domain D(f).

I11.7.6. Remark. Theorem IIL7.5 is an easy consequence of the representation y =
f(z) = ¥(p-1(z)), the theorem on continuity of a composite function (see paragraph
I11.3.25) and the theorem on continuity of an inverse function (see paragraph III.3.28).

II1.7.7. The derivative of a parametrically defined function. In addition
to all assumptions from paragraph II1.7.2, let us suppose that both functions ¢ and
% have derivatives ¢ and 1 in the set M; C M and moreover, ¢(t) # 0 for all
t € M;. Applying the theorem on the derivative of a composite function and the
theorem on the derivative of an inverse function, we obtain for = € R(yp|m,):
dy ) o
4= = fi{z) = "
; s 1 P(t
= ey = _i(z) - o (z) = R /51 PRASTHEL. ToAs S o 1)
W)(fP 1( ))] 11’(99 1( )) 14 1( ) ‘d"(‘P l( )) ‘P(V’-—l(x)) (p(t)

Thus, function f is differentiable in the set R(p|pr,) = (M) and its derivative f’
can be parametrically represented by the equations

dy _ 9(t)

— = —=; M.

aTey "t

II1.7.8. Remark. In scientific literature, you can often find equations (II1.7.3)

written down in such a way that the second equation has only y instead of dy/dz
on the left— hand side. This is a purely formal matter — a dependent variable as well

(IIL.7.3) z = p(t),
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as an independent variable can be denoted by various symbols. Hence the dependent
variable in equations (III.7.3) can be denoted by y, 3" and also by dy/dz. The
last possibility is perhaps less usual, but we regard it as more instructive in a given
situation.

ITL.7.9. Example. Verify whether the equations z =2t —sint,y=1+cos ¢ (for
t e [0’.2W]) define parametrically a function y = f(z). In a positive case, decide
about its continuity, specify its domain, its range and find intervals of monotonicity.

Solution: The function ¢(t) = 2t — sin t has the positive derivative 2 — cos ¢
in the interval [0, 27 ], hence it is increasing (and consequently also one-to-one) in
this interval. This means that the given equations define parametrically a function
¥ = f(x). Both functions ¢(t) = 2t—sin ¢t and (t) = 1+cos t are continuous in the
interval [0,27]. Therefore, by theorem III.7.5, the parametrically defined function
y = f(z) is also continuous on its domain.

The range of the function ¢(t) = 2t—sin ¢ on the interval [0,2n] is the interval
[0,47]. (This is apparent from the fact that ¢ is continuous and increasing in
(0,27], its value at the point 0 is 0 and its value at the point 2 is 4.) Thus,
D(f) = R(p) = [0,4n].

The range of the function (¢) = 1+cos ¢ on the interval [0, 27] is the interval
[0,2]. Thus, R(f) = R(¢) = [0,2]. :

Both functions ¢(t) = 2t —sint and 4(t) = 1 + cos ¢ are differentiable in
the interval [0,27] and ¢@(t) = 2 —cost # 0 for all ¢t € [0,27]. Substituting to
equations (II1.7.3), we get the following parametric representation of the derivative
of function f:

: dy sin t
z = 2t- t —_= - :
sin ¢, = P te0,2r]
The values of f’(z) are given by the second equation. So it holds:
sin ¢
fl(z) >0 —-m>0 = -sint>0 <= te(m2r) < z€
(2m, 4n),
sin ¢
fz) <0 < —m<0 = -—sint<0 < te(0,71) < =z¢
(0,2m). \

Hence f is decreasing on the interval [0,27] and increasing on the interval [ 2, 47].
It has an absolute minimum at the point 2w, where f(27) = ¢(x) = 0. It has an
absolute maximum at the points 0 and 4w, where f(0) = %(0) = 2 and f(4m) =
P(2r7) = 2.

I11.7.10. The second derivative of a parametrically defined function. In
addition to the assumptions from paragraph IIL.7.2, let us suppose that functions
¢ and ¢ have second derivatives ¢, 1 in the set My C M and ¢(t) # 0 for
all t € M,. The equations (IIL7.2) define parametrically a function y = f(z). Its
derivative is represented parametrically by equations (II1.7.3). The second derivative
can be obtained as a first derivative of the first derivative, i.e. to express it, we
apply to equations (III.7.3) the same procedure as we applied to equations (IIL.7.2)
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in paragraph IIL.7.7. If we denote by ¢ the _fmfction on the right hand side_ of
the second equation in (II1.7.3) (i.e. 9(t) = #(t)/¢(t)), we obtain the following
parametric representation of the function f:

ddy _ 9@
r= (p(t), az—z = ;b—(?j; t € M,.

Substituting 9(t) = [¥(t) - ¢(t) — ¥ (t) - $(¢) ]/ [@(t)]* to the second of the above

equations, we get:

2 " o ok o

Other higher order derivatives of a function which is defined parametrically can
be expressed analogously.
IIL.7.11. Problems. Verify that the given equations define parametrically func-

tions y = f(z). Are these functions continuous? Specify their domains, their ranges
and find a parametric representation of their first and second derivatives.

a) r=t3+t+1, y=t*+2t+2;, te(-o0,+00),
b) z=cos®t, y=sin®t; te(0,7/2).
Results: a) f is continuous, D(f) = (—00,+00), R(f) = (2743 - 22/3 4 2, +00),

dy 43+2
ok = = H t —W, 3
e z=1+t+1, el ™ 3 € (—o0, +00)
d?y 12(t*+t2-1t)
"o, =3 — = " t € (—o0, +00).
e r=t+t+1, e ST € (-0 )
b) f is continuous, D(f) =[0,1], R(f) =[0,1],
F: z = cos® t, gﬂ = —tant; t € (0,7/2),
T
d2y 1
" = cos® EX i - @ {0 xfD).
e kol dz? = 3sint cost t’ €(0.x/%)

II1.8. Approximate solution of a nonlinear equation f(z) =0

II1.8.1. The root of the equation f(z) =0. Let f be a function. Every point
& € D(f) such that f(£) =0 is called the root of the equation f(z) = 0.

I11.8.2. Motivation. The equation e — 5+ z = 0 has one root in the interval
(=00, +00). Try to verify this for yourself! (Hint: The equation can be written in
the equivalent form e®* = 5 — z. It follows immediately from the behavior of the
functions e® and 5 — z that their graphs cross at just one point. Sketch these
graphs!) However, you will not succeed in expressing “the unknown” z from the
considered equation. Its analytic solution is impossible.

I11.8.3. Remark. You learned a series of methods for solving various types c?f
equations at secondary school. These methods mostly led to a so called analytic
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expression of roots. This means that the roots were given by some formulas and
their numerical value could be obtained by performing a finite number of arithmetic
operations. In many, indeed in most cases, however, this is impossible. Simple
equations can usually be solved analytically, while slightly more complicated cases
mostly cannot.

We are going to explain two so called approximate methods of solution in the
following paragraphs. It is characteristic of these methods that they enable us to
express the solution only approximately, but with an arbitrarily small error. The
maximum admissible value of the error can usually be chosen before the beginning of
the computation. This is quite satisfactory for practical purposes — you can compare
it with the situation where the equation can be solved analytically, but the formula
that represents a solution contains some square or higher order roots. The value of
a root is often an irrational number, so it can also be specified only approximately.
(See for instance the situation when the root of an equation is /3 + 5.)

Approximate methods mostly require a performance of a higher number of arith-
metic operations. Thus, an effective realization of these methods is possible only on
computers.. Approximate methods are also often called numerical methods.

II1.8.4. Successive approximations, iterative sequence, error estimate.
Methods of solution of the equation f(z) = 0 that we are going to explain in next
paragraphs are based on the construction of so called successive approzimations.
We choose in some way (respecting instructions of a used particular method) an
initial approzimation zo and then (also in accordance with the instructions of the
method) we construct further approximations z,, T3, etc. The sequence {z,} is
called the sterative sequence. Methods based on the construction of an iterative se-
quence are called iterative methods.

The sketched approach has a sense only if _lﬂ:l z, = £, where £ is a root of
n 00

the equation f(z) = 0. The reason is that in this case, computing further and further
approximations, we usually get nearer and nearer to the exact solution - to the root
€. Thus, an important part of every iterative method is not only an instruction how
to choose an initial approximation zo and how to construct further approximations
i, Ty, ..., but also an information when (i.e. under which conditions) the iterative
sequence converges to the root ¢ of the equation f(z) = 0.

Every procedure must be sometimes finished. Thi§ means that we cannot pro-
ceed with the construction of successive approximations to infinity, we must content
ourselves with approximations z,, up to some index n. However, how to choose the
index of the last approximation in a particular case? This is closely connected with
a required accuracy we want to solve the equation f(z) = 0 with. Most iterative
methods contain as their parts estimates of the type |z, —£| < ¥,, where 7, =0
for n — 400 and the methods enable us to specify the number 7,. Such estimates
are called error estimates. They tell us that if we replace an exact root & of the
equation f(z) = 0 by an approximate solution x,, we make an error at most .
So, when we are in the situation that we wish to solve the equation f(z) = 0 with
an error not exceeding a given positive number ¢, we compute the approximations
to the index n which is so large that v, < e. Then we can be satisfied with the
approximation z, because the error estimate yields |z, —£| < 7, < € and so we
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can regard , as an approximate solution of the equation f(z)=0.

It is necessary to mention that computations are sometimes made without error
estimates. We simply decide to be satisfied for example with the approximation
z190 and proclaim it an approximate solution. Nevertheless, it is obvious that this
approach is not as correct as if an error estimate is used.

I11.8.5. Separation of a root. By the separation of a root we understand the
specification of an interval [a,b] such that the equation f(z) =0 has a unique root
¢ in [a,b]. To separate the roots of the equation f(zx) = 0, we often use theorems
I11.3.26 and II1.5.4.

1I1.8.6. Example. Let us separate the roots of the equation Inz —2r 4+ 7 = 0.
The function f(z) = In —2z+7 is defined in the interval (0,+o0), where it is also
continuous and its derivative is f'(z) = 1/z — 2. Moreover,

lim f(z) = —oo0.

li =-
e Ot fl=) %% z—+oo

You can easily verify that the derivative f'(z) is positive for z € (0, 0.5), equal to
zero for £ = 0.5 and negative for = € (0.5, +00). Hence function f is increasing in
the interval (0, 0.5] and decreasing in the interval [0.5,+0c). It has a strict local
maximum at the point 0.5 and f(0.5)=6—1In2>0.

Let us now choose a > 0 sufficiently small, for example @ = 0.0001 and let us
show that one root of the equation f(z) =0 is separated in the interval [a, 0.5].
a) Existence of a root: We already know that f is continuous in the interval
[a,0.5], f(a)= f(0.0001) = In 0.0001 — 0.0002 + 7 = (—4) -In 10 — 0.0002 + 7 <
(—4)-2-10.0002+7 <0 and f(0.5) > 0. Since 0 is between f(a) and f(0.5), it
follows from theorem II1.3.26 that there exists such a point £; between a and 0.5
that f(&)=0.

b) Uniqueness of the root: Function f is increasing in [a, 0.5], so it takes on
every its value in this interval only once. This implies the uniqueness of the point
& € [a, 0.5] such that f(&;) =0.

It can be proved in a similar way that if one chooses b > 0 large enough, for
example b = 10, then there exists another root £; of the equation f(z) =0 in the
interval [0.5, b]. & and &2 are the only roots of the equation f(z) = 0.

II1.8.7. The Cut and Try Method. Suppose that function f is continuous
and strictly monotonic in the interval [a,b] and f(a)- f(b) < 0. These assumptions
guarantee the existence of a unique root ¢ of the equation f(z) =0 in [a,b] and
moreover, the iterative sequence whose construction is described in the following
converges to £.

Choice of the initial approximation: Put zo = (a+b)/2.

Calculation of further approximations: If f(zq) f(b) < 0 then ¢ € (z1,b]. Therefore
we change a and we put a = zg. If f(zo)- f(b) > 0 then £ € [a,2o] and we change
b: we put b = zo. Further, we put z; = (a + b)/2. Similarly, we obtain z2, T3,
etc. (Illustrate the procedure on an appropriate picture for yourself!)

The error estimate: Denote by L the length of the interval [a,b] at the beginning
of the calculation. Since £ € [a,b], |zo — £| < L/2. The length of the “variable”
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interval [a,b] (where the root ¢ is separated) decreases by one half at each step.
Hence

|zn — €| < Lj2n+1,

II1.8.8. Newton’s Method. Suppose that

a) function f has a second derivative f”(z) at each point = € [a,b] and f"(z)
does not change its sign in [a,b].

b) f'(z)#0 forall z€[a,b],

¢) f(a)- f(b) <.

It can be proved under these assumptions that the equation f(z) = 0 has a unique

root £ in [a,b] and the iterative sequence, constructed in accordance with rules
described in the following, converges to £.

Choice of the initial approximation: The initial approximation z¢ can be chosen to
be equal to an arbitrary point of the interval [a,b] such that f(zo) - f*(zo) > 0.
(Among others, this inequality is satisfied by one of the points a and b.)
Calculation of further approximations: To approximate the curve y = f(z) in the
neighborhood of the point [zo, f(xg)], we use a tangent line to the graph of f at
this point. The point where this line crosses the z-axis is called z;. Similarly, the
point where the tangent line to the graph of f at [z, f(x1)] crosses the z—axis is
the next approximation 3, etc. (Sketch a picture for yourself!) This procedure can
easily be expressed computatively. Suppose that you already know the approximation
zy, and you wish to find the next approximation z,+;. The equation for the tangent
line to the graph of f at the point [z, f(zn)] i8 ¥ = f(zn) + f'(20) - (z — 24).
(See paragraph I11.4.5.) y = 0 corresponds to = = Zn+1. So we get the equation
0= f(zn) + f'(zn) * (Tn+1 = Za), which yields:

o f(zn)

Intl = Tp

f(zn)

Fig. 23

The error estimate: It follows from the Mean Value Theorem (theorem IIL5.1), ap-
plied on the interval with end points z,, and &, that there exists 7 between x, and
€ such that f(zn) = f(€) = f'(n) (zn — ). However, f(£) equals to zero (because
£ is the root of the equation f(z)=0). Thus, we have =z, — € = f(z,)/f'(n) and
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this further implies that
z
ixﬂ - E} S L’f(rn_")[,
where m = minge[a,p) | f'(1)]-

I11.8.9. Remark. You will meet other approximate methods of solution of the
equation f(z) = 0 in your future studies of subject Numerical Mathematics. You will
also learn how to work on an approximate solution of systems of generally nonlinear
algebraic equations for a larger number of unknowns.

II1.9. Complex and vector—valued functions of a real variable

I11.9.1. A complex function of a real variable. If M C IR then each mapping
of M to C (where C is the domain of complex numbers) is called a compler function
of a real variable (or shortly a complezr function).

Every complex function F' can be expressed in the form F = f+ig where f
and g are real functions (see paragraph I11.2.1). Function f is called the real part
of the complex function F (we write: f = ReF) and function g is called the

imaginary part of the complex function F (we denote it: g=ImF).

111.9.2. The limit of a complex function. We say that a complex function
F = f+ig hasalimit L (= a+ib) at point zp if lim f(z)=a and lim g(z)="2.
T—ZTo T—To
We write: lim F(z) = L.
T—Zo
By analogy, we can define the lefi-hand limit and the right-hand limit.

1I1.9.3. Continuity of a complex function. A complex function F = f +ig is
said to be continuous at point zp if both functions f and g are continuous at zg.

The left continuity at point To, the right continuity at point zo and the
continuity on interval I of a complex function can also be defined analogously.

111.9.4. Derivative of a complex function. If functions f and g are both
differentiable at point z, then we say that the complex function F = f +ig is
also differentiable at point xo. Its derivative at point zo is the complex number
F'(z0) = f'(z0) +1¢'(z0).

Analogously, we can define the left derivative and the right derivative.

I11.9.5. A vector—valued function of a real variable. If M C IR then every
mapping of M to V(IE;) is called a vector-valued function of a real variable (or
briefly a vector—valued function or a vector function).

Each vector function f can be written in the form f = (u,v,w) where u, v,
w, are “scalar” functions (see paragraph II1.2.1). Functions u, v, w are called the
component functions of vector function f.

Vector function f = (u,v,w) can also be written down in the form f = ui+
vj+ wk, where i, j, k are unit vectors oriented in accordance with the coordinate
axes: i= (1’0’0)9 Jj= (01 1,0), k=(0,0,1).
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II1.9.6. The limit of a vector function. If lim u(z) = o, ]im v(z) = B,
T—To T—To
and zlil;g w(z) = then we say that the vector function f = (u,v,w) has the limit
0
L = (a,8,7) as = approaches zo. We write: ]:l;m f(z) = L.

The left- limit and the right limit can be defined similarly.

II1.9.7. Continuity of a vector function. We say that a vector function f =
(u,v,w) is continuous at point g if all component functions u, v, w are continuous
at point zjp.

The notions of the left continuity at point o, the right continuity at point zq
and the continuity on interval I of a vector function can also be defined analogously.

I11.9.8. Derivative of a vector function. The derivative of a vector
function f = (u,v,w) at point zo is the vector denoted by f'(zy) that satisfies:
f'(z0) = (¥'(z0), v'(z0), w'(z0)) = v'(z0) i+ v'(z0)j + w'(zo) k (if the derivatives
u'(zo), v'(zo) and w'(zq) exist). _

The notions of the left derivative and the right derivative can be defined analo-
gously.

I11.9.9. Remark. A vector function which has another number of component
functions and its limit, continuity and derivative can be introduced in the same way.

I11.9.10. Example. If a mass point moves in space and its position at time ¢
is given by the position vector P(t) = (3 cos t, 3 sin ¢, 4t), then the instantaneous
velocity of the mass point is P/(t) = (3 cos ¢, —3 sin £, 4) and its instantaneous
acceleration is P”(t) = (-3 sin ¢, —3 cos t, 0).

I11.9.11. Problems. Find f' and f", if vector function f has the form
a) f(z) = (2-32)i+ (22-5)j + (2z -7k,
b) f(t) = (sin? ¢, tant, In t — t).

Results: a) f'(z)=-3i+2rj+2k, f'(z)=2j (for 7€ (—o00,+0)),
b) f'(t)=(2sintcost, 1/cos? t, 1/t — 1),

£(t) = (2 cos® t — 2 sin? ¢, 2 sin ¢ / cos® ¢, —1/¢%)

(for t € (0,7/2) U (7/2,37/2) U (37/2,57/2) U ...).

IIL.9.12. Remark. To evaluate limits and derivatives of a sum, a difference, a
product and a quotient of complex functions (respectively a sum, a difference and a
product of vector functions), we can use the same rules as in the case of real functions.

Vector functions can be multiplied in the same way as vectors — i.e. there exists
a scalar product and a vector product of vector functions. The rule for differentiation
of a product as it is known from calculus of real functions (see paragraph I11.4.10 d) )
can also be applied to both types of products of vector functions:

If vector functions f and g have derivatives at point zo then the products f-g
and f x g also have derivatives at point zo and it holds:

(f- &) (z0) f'(zo) - g(xo) + f(z0) -8 (%),
(f x g)'(z0) '(zo) x g(zo) + f(z0o) x g'(z0)-

I
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