- **1.** a) Write *Frobenius theorem* (including all assumptions).
 - b) Find the number of solutions depending on the value of the parameter $a \in \mathbb{R}$:

$$\begin{aligned} -x &+ z &= 0\\ 2x + ay + az &= 8\\ y + az &= 4 \end{aligned}$$

- c) Using the Gauss algorithm or Cramer's rule find the solution of the system for a = 3.
- **2.** a) Define the notion of *eigenvalue* and *eigenvector* of a square matrix. Write down and explain the property of a matrix that will guarantee the existence of zero eigenvalue.

b) Find eigenvalues of the matrix
$$\boldsymbol{A} = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & -5 \\ 2 & 1 & 3 \end{pmatrix}$$

- c) Choose one of the eigenvalues, construct the system of equations for computing the eigenvectors and find that eigenvector.
- **3.** Given function $f(x) = \sqrt{4x 3} + \frac{x^2}{3}$
 - a) Compute 1^{st} a 2^{nd} derivative of this function. Find domain D(f) and D(f').
 - b) Find equation of tangent line to the graph of function f at the point $x_0 = 1$.
 - c) Write Taylor's polynomial $T_2(x)$ of 2^{nd} degree with the center at $x_0 = 1$ of function f. Using the $T_2(x)$ find the approximate value of f(x) for x = 2.
 - d) Write Lagrange's form of the remainder $R_3(x)$. Use it to estimate the error of the approximation of the value of function f at the point x = 2 by $T_2(x)$ from part c).
- **4.** For the function $f(x) = 4 \arctan x 2x$
 - a) Find intervals of monotonicity and local extrema of the given function f.
 - b) Find intervals of convexity or concavity of the function f. Find inflection points.
 - c) Find the asymptote of the function f for $x \to +\infty$. Sketch the graph of the function f on interval $\langle -1; +\infty \rangle$.
- **5.** Compute integrals a) $\int \sin^3 \varphi \, \cos^3 \varphi \, d\varphi$, b) $\int 2x \arctan x \, dx$. Find intervals of existence of these integrals.
- **6.** a) Compute integral $\int \frac{1}{x^2 x 6} dx$, find intervals of its existence.
 - b) Compute area of the surface, which is for $x \in \langle 0, 2 \rangle$ bounded by axis x and by the curve $y = \frac{1}{x^2 x 6}$. Simplify the result.
 - c) Decide (by computation) about the convergence of the improper integral $\int_0^3 \frac{1}{x^2 x 6} \, \mathrm{d}x$.