Mathematics I – Exam 4

- **1.** a) Explain the Cramer's rule (don't forget the assumptions).
 - b) Find all values of the parameter $\lambda \in \mathbb{R}$, for which it's possible to use the Cramer's rule to solve the given system of linear algebraic equations for unknowns x, y, z:

$$3x + y = \lambda(1 - z) + 1$$

$$x + y = \lambda$$

$$2(x + y - z) = \lambda(1 - y).$$

- c) Use the Cramer's rule to compute the unknown y from the system given in b), for the value $\lambda = -3$.
- a) Define the notion of the *inverse matrix*. Write some necessary and sufficient condition for the existence of an inverse matrix to the given matrix \mathbf{A} . $\begin{pmatrix} 2 & 1 & 0 \end{pmatrix}$
 - b) Verify if there exists an inverse matrix to the matrix $\mathbf{A} = \begin{pmatrix} 2, & 1, & 0 \\ 1, & 0, & -1 \\ 0, & 1, & 3 \end{pmatrix}$.

If it exists, compute it and verify the result (from definition)

- c) Find the inverse matrix to the matrix $B = A^2$.
- **3.** Given function $f(x) = x(5x 1)^{-1/2}$.
 - a) Compute the derivative f'(x). Find the domains D(f), D(f').
 - b) Write the equations of the tangent and normal lines to the graph of the given function at the point $[x_0, f(x_0)]$ for $x_0 = 2$.
 - c) Justify the existence of absolute extrema of the given function on the interval $\langle 1/4, 3 \rangle$. Find those extrema, i.e. find their position, type and (approximate) value.
- **4.** Given function $f(x) = \frac{x+1}{x^2-4}$.
 - a) Find the domain D(f) of the function f, find the intersections of the graph of f with the x and y axes, find the limits of f in the boundary points of D(f).
 - b) Determine the intervals of monotonicity and local extrema of f (i.e. find their position, type, value)
 - c) Find all asymptotes of the graph of the function f. Sketch the graph.
- **5.** Find the following integrals and intervals of their existence.

a)
$$\int \ln(x+1) dx$$
 b) $\int \frac{(3x+4)}{(x+1)(x+2)^2} dx$

- **6.** Given function $f(x) = x \sin(x^2 + 1)$.
 - a) Compute the integral $\int f(x)dx$. Verify the result (from the definition).
 - b) Compute the (integral) mean value of the function f on the interval $\langle 0; \sqrt{2\pi} \rangle$.