Mathematics I – Exam 5

1. a) Given system of equations with parameter $a \in \mathbb{R}$: x + 2y + 3z = 4

$$2x + 3y + 4z = 5$$

$$ax + ay + az = a$$

- a) Write the Frobenius theorem (assumptions and statement).
- b) Find the number of solutions of the system depending on the value of parameter a.
- c) Find the solution of the given system for a = 0.
- d) Verify that for a = 1 the x = -2, y = 3, z = 0 is a solution of the system.
- 2. a) Find the eigenvalues of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 1 & -5 \\ 0 & 0 & 3 \end{pmatrix} \quad .$$

- b) For the largest eigenvalue write down the system of equations for the computation of eigenvectors. Solve the system and find the eigenvectors.
- c) Verify (by calculation) that for eigenvalues of the given matrix holds $det \mathbf{A} = \lambda_1 \cdot \lambda_2 \cdot \lambda_3$ and moreover $\lambda_1 + \lambda_2 + \lambda_3 = a_{11} + a_{22} + a_{33}$. Based on the knowledge of eigenvalues of matrix \mathbf{A} decide whether there exists the inverse matrix \mathbf{A}^{-1} .
- d) What is the relation between the eigenvalues of a matrix and eigenvalues of its inverse matrix? Find the eigenvalues of the inverse matrix A^{-1} (if it exists).
- **3.** Given function $f(x) = \ln x^2$.
 - a) Compute the derivative f'(x) and find the domains D(f), D(f').
 - b) Write the Taylor polynomial $T_2(x)$ of order 2 centered at $x_0 = 1$ of the function f(x).
 - c) Write the equation of the tangent to the graph of the function f at point $[x_0, f(x_0)]$, where $x_0 = 1$.
 - d) Based on the results from problems b) and c), decide if the function is in the neighborhood of given point $[x_0, f(x_0)]$ increasing/decreasing, convex/concave. Sketch the graph of the function f(x) in the neighborhood of point $[x_0, f(x_0)]$.
- **4.** Given function $f(x) = x^2 e^{-x}$.
 - a) Compute the derivative f'(x) and find its domain D(f').
 - b) Find the intervals where the function f is increasing/decreasing. Find local extrema.
 - c) Compute the limits of given function for $x \to -\infty$ and $x \to +\infty$ and sketch the graph.
- **5.** Find the following integrals and intervals of their existence.

a)
$$\int x^2 \sqrt[3]{8 - x^3} \, dx$$
 b)
$$\int \sin^2 x \, \cos^3 x \, dx$$

- **6.** Given function $f(x) = x^3 \ln x$. a) Compute the integral $\int f(x) dx$.
 - b) Find the surface area of the region that is for $x \in \langle 2, 4 \rangle$ bounded by the x axis and by the curve y = f(x). Simplify the result.
 - c) Decide by computation if the following improper integral converges $\int_0^1 f(x) dx$.