- **1.** Given real function of two variables: $f(x, y) = e^{-xy} \cos y$
- a) Compute the gradient of the function f at point $T = [\pi; 0]$. What is the geometrical interpretation of the vector grad f(T)?
- b) Find the directional derivative of the function f at point T in the direction given by the vector $\vec{s} = (2; 3)$. Describe the behavior of the function in this direction. (*i.e.* is the function decreasing or increasing, how fast?)
- c) Write the formula for the differential dz of the function z = f(x, y) at point $T = [\pi; 0]$.
- d) Does the function f has a local extremum at the point T? Justify your answer.
- **2.** The function z = f(x, y) is given in the proximity of the point P = [1; 1; 1] by the implicit formula $F(x, y, z) = xyz + x^2 + y^2 + z^2 4 = 0$
- a) Compute the (first order) partial derivatives of the function f(x, y) at the point [1; 1].
- b) Write the equation of the plane tangent to the surface F(x, y, z) = 0 at the point P.
- c) Use the equation of the tangent plane to find the approximate value of f(1.2; 0.9).
- d) Find the (position of) critical points of the function f(x, y) (where grad $f = \vec{0}$).
- **3.** a) Write the Fubini theorem for the double integral. (complete theorem, including the assumptions, notation and the statement)
- b) Compute the double integral $\iint_{\Omega} \sin x \, dx dy$ where $\Omega = \{ [x; y] \in \mathbb{E}_2 : 0 \le x \le \pi; x \le y \le 2x \}.$
- c) Write (one) possible physical (or geometrical) interpretation of the integral from b).
- **4.** Solid body $M \subset \mathbb{E}_3$ is bounded by the (conical) surface $z = \sqrt{x^2 + y^2}$ and sphere $x^2 + y^2 + z^2 = 1$. It has constant density $\rho(x, y, z) = 1$.
- a) Use the triple integral (in spherical coordinates) to compute the mass m of the body M.
- b) Compute the static moment of the body M with respect to xy plane, i.e. compute m_{xy} .
- c) Compute the z-coordinate of the center of mass of the body M, i.e. find z_{CM} .
- **5.** Given vector field: $\vec{f}(x, y) = (2xe^{-y}; 2y x^2e^{-y}).$
- a) Using the sufficient condition(s) verify that the given vector field $\vec{f}(x, y)$ is potential (conservative) in \mathbb{E}_2 .
- b) Compute its potential $\varphi(x, y)$. Verify (from definition) that the obtained scalar field $\varphi(x, y)$ is a potential of the given vector field $\vec{f}(x, y)$.
- c) Compute the line integral $\int \vec{f} \cdot d\vec{s}$ from point P = [1; 0] to point Q = [2; 1].
- **6.** Surface $\sigma = \{[x; y, z] \in \mathbb{E}_3 : z = \sqrt{x^2 + y^2}; 1 \le z \le 3\}$ is oriented by a normal vector \vec{n}_{σ} that has negative last (third, z) component.
- a) Sketch the surface σ including its orientation. Suggest a suitable parametrization P(u, v) of σ and determine, if the given surface is oriented in agreement with this parametrization.
- b) Compute the surface integral (of a vector function) $\iint_{z} (-x; -y; z^3) \cdot d\vec{p}$.

- **1.** Given real function of two variables: $f(x, y) = x^3 + y^3 3x^2 3y + 10$
- a) Compute the partial derivatives of the first and second order of the given function f.
- b) Find the local extrema of the function f, i.e. find their position, type and value.
- c) Find the directional derivative of the function f at point [0;0] in the direction given by the vector $\vec{s} = (2;3)$. Describe the behavior of the function in this direction (i.e. is the function decreasing or increasing, how fast?)
- **2.** Function y = f(x) is in the neighborhood of the point $P = [\pi; 0]$ given implicitly by the relation $F(x, y) = \sin(x + y) y^2 \cos x = 0$.
- a) Compute the partial derivatives (of the first order) of the function F(x, y).
- b) Compute the value of the derivative y' = f'(π)
 (i.e. find the slope of the tangent to the curve F(x, y) = 0 at point P).
- c) Write the equation of the tangent to the graph of the function y = f(x) at the point P.
- **3.** a) Sketch the region $D = \{ [x; y] \in \mathbb{E}_2 : 1 \le x^2 + y^2 \le 4; x \ge 0; y \ge x \}.$
- b) Transform the domain D into polar coordinates(i.e. write the transformation formulas and corresponding bounds for variables).
- c) Compute the double integral $\iint_{D} \frac{1}{(x^2 + y^2)^{3/2}} dxdy$

4. a) Compute the triple integral
$$\iiint_{\Omega} 6xy \ dxdydz$$
 where

$$\Omega = \{ [x; y, z] \in \mathbb{E}_3 : 0 \le x \le 1; 0 \le y \le \sqrt{x}; 0 \le z \le 1 + x + y \}$$

- b) Write (one) possible physical (or geometrical) interpretation of the integral from a).
- **5.** Given vector function: $\vec{f}(x, y) = (2y^{3/2}; 3x\sqrt{y})$ and oriented curve $C \subset \mathbb{E}_2$ defined by the graph of the function $y = x^2$ starting at point P = [1; ?] and ending at Q = [2; ?].
- a) Sketch the curve C and write down its parametrization P(t).
- b) Use the parametrization P(t) to compute the line integral $\int_C \vec{f} \cdot d\vec{s}$.
- c) The given vector field $\vec{f}(x, y)$ is potential (do not verify). Compute its potential $\varphi(x, y)$.
- d) Use the potential $\varphi(x, y)$ to compute the same integral as in b), i.e. the integral $\int_P^Q \vec{f} \cdot d\vec{s}$.
- **6.** a) Compute the surface integral (of a scalar function) $\iint_{-} y \, dp$ where

$$\sigma = \left\{ [x; y, z] \in \mathbb{E}_3 : 0 \le x \le 1; 0 \le y \le 2; z = x + y^2 \right\}$$

b) Write (one) possible physical (or geometrical) interpretation of the integral from a).