- **1.** Given real function of two variables: $f(x, y) = x^2 + y^2 2x 4y$ and domain $D = \{ [x; y] \in \mathbb{E}_2 : x \ge 0, y \ge x, y \le 3 \}.$
- a) Justify the existence of absolute (global) extrema of the given function f on the set D. (Use the sufficient conditions theorem on the existence of global extrema.)
- b) Find the absolute (global) extrema of the given function f on the set D.

2. Given function
$$F(x, y) = y + \ln y + x^3$$

- a) Verify, that by F(x, y) = 0 is in the neighborhood of the point T = [-1; 1] implicitly defined function y = f(x) which has continuous first and second derivative. (*i.e.* write down and verify all the assumptions of the corresponding theorem)
- b) Write the equation of the tangent to the graph of the function y = f(x) at the point T.
- c) Compute f''(-1) and decide if the function f(x) is convex or concave (concave up or down) at x = -1.
- d) Write down the Taylor's polynomial $T_2(x)$ of the function f(x) centered at x = -1.
- **3.** Given solid body $M \subset \mathbb{E}_3$ bounded by surfaces

$$z = 0, z = 2 + \frac{1}{y}, y = 1, y = x \text{ and } y = 8 - x.$$

a) Sketch the projection of the body M into the xy plane, i.e. sketch the region $M_{xy} = \{[x; y] \in \mathbb{E}_2 : y \ge 1; y \le x; y \le 8 - x\}.$

Write this domain M_{xy} as an elementary domain of integration with respect to y axis.

- b) Compute the volume of the given solid body M.
- **4.** The solid body $B \subset \mathbb{E}_3$ (elliptic cylinder) is defined as $B = \{[x; y; z] \in \mathbb{E}_3 : 16x^2 + 9y^2 \le 144; -1 \le z \le 3\}.$
- a) Transform the solid *B* into generalized cylindrical coordinates. (*i.e.* write down the transformation formulas and determine the bounds for the transformed variables)
- b) Use definition to compute the Jacobi matrix and Jacobian of the transformation from a).
- c) Compute the integral $\iiint_B z^2 \sqrt{16x^2 + 9y^2} \, dx dy dz$.
- **5.** Given vector field $\vec{f}(x,y) = (x+y;x^2-y)$ and domain $\Omega = \{[x;y] \in \mathbb{E}_2 : x^2 \le y \le \sqrt{x}\}.$
- a) Compute the integral $\oint_C \vec{f} \cdot ds$ where the closed curve $C = +\partial\Omega$ is positively oriented boundary of Ω .
- b) Write down the Green's theorem (including all assumptions, notation and the statement).
- c) Is the given vector field $\vec{f}(x, y)$ potential (conservative)? Why?
- **6.** A three-dimensional thin plate has a shape of the surface

 $Q = \left\{ [x; y, z] \in \mathbb{E}_3 : x^2 + y^2 = 4; 0 \le z \le 4 \right\}$ and (surface) density prescribed by $\rho(x, y, z) = e^{-z}$.

- a) Sketch the surface Q and suggest a suitable parametrization P(u, v) of Q including the domain for parameters u and v.
- b) Compute the mass m of the above described thin plate.

- **1.** a) Find the local extrema of the function $f(x, y) = e^x xe^y$. (*i.e.* find the position of critical points, determine their type and compute the function value)
- b) Compute the partial derivatives (of the first order) of the function $g(x, y) = (x + 3y)e^{y-x^2}$.
- **2.** Given real function of two variables $f(x, y) = \ln(4x^2 y^2)$
- a) Find the equation of tangent plane to the graph of the function f(x, y) at point [1; 1; ?].
- b) Verify (by computation) that for given function f holds $\frac{\partial^2 f}{\partial x^2} = 4 \frac{\partial^2 f}{\partial u^2}$ and $\frac{\partial^2 f}{\partial x \partial u} = \frac{\partial^2 f}{\partial u \partial x}$.
- c) Sketch the domain $D(f) \subset \mathbb{E}_2$, where the function f is defined.
- **3.** Given region $\Omega = \{ [x; y] \in \mathbb{E}_2 : \frac{1}{x} \le y \le \sqrt{x}; x \le 3 \}.$
- a) Sketch the domain Ω and determine the lower bound for variable x.
- b) Compute the double integral $\iint_{\Omega} x^2 y \, dx dy$
- c) Find two possible physical (or geometrical) interpretations of the integral from b).
- **4.** a) Sketch the domain $M = \{ [x; y, z] \in \mathbb{E}_3 : x^2 + y^2 \le 4; 1 \le z \le 5 \}$ and transform it into cylindrical coordinates.

(i.e. write the transformation formulas, find the bounds for transformed variables)

- b) Compute the triple integral $\iiint_M z\sqrt{x^2 + y^2} \, dx dy dz$.
- **5.** The curve $C \subset \mathbb{E}_2$ is defined by the graph of the function $y = x^3$ for $0 \le x \le 1$.
- a) Sketch the curve C and write down its parametrization P(t). Find the tangent vector $\dot{P}(t)$ and its length $||\dot{P}(t)||$.
- b) Compute the mass m of an object having the shape of the curve C along the which the density is distributed as $\rho(x, y) = \sqrt{1 + 9xy}$.
- c) Given scalar potential $\varphi(x, y) = x^2y + 2y^4$ of a vector field $\vec{f}(x, y)$. Compute the vector field $\vec{f}(x, y)$ (from the given $\varphi(x, y)$ and definition of potential).
- **6.** Oriented surface $Q \subset \mathbb{E}_3$ is defined by the parametric equation X = P(u, v), where the parametrization is given by $P(u, v) = (u^2 v; u; v^2)$ for $0 \le u \le 2$ and $-1 \le v \le 3$. Surface Q is oriented by a normal vector \vec{n}_Q that has negative third (i.e. z) component.
- a) Find out if the given surface Q is oriented in agreement or disagreement with the parametrization P(u, v).

b) Compute the surface integral
$$\iint_Q (z; 0; y) \cdot d\vec{p}$$