1. Given function of two variables: $f(x, y)=\left(x^{2}+y^{2}\right) \mathrm{e}^{-x}$
a) Compute the partial derivatives of the first and second order of the given function $f(x, y)$.
b) Find the critical points of the function f. (Determine their position, type and function value.)
2. Given function $f(x, y)=6-x^{2} y-\ln (x y)$ and point $A=[4 ; 1 / 4]$.
a) Write the equation of the tangent plane and normal line to the graph of the function $z=f(x, y)$, at the point $P=[4 ; 1 / 4 ; ?]$.
b) Find the direction \vec{s} of the steepest descent of the function f at the point A. How fast is the function decreasing in this direction (i.e. find the slope of the tangent)?
c) Write the formula for the differential $\mathrm{d} f(A)$ of the given function f at point A.
d) Write down and sketch the domain $D \subset \mathbb{E}_{2}$, where the function $f(x, y)$ is differentiable. Use the theorem on the sufficient conditions of differentiability.
3. Domain $\Omega \subset \mathbb{E}_{2}$ is defined as elementary domain of integration with respect to y axis by $\Omega=\left\{[x ; y] \in \mathbb{E}_{2}: 0 \leq y \leq 4 ; \sqrt{y} \leq x \leq 2\right\}$.
a) Rewrite the given domain Ω as elementary domain of integration with respect to x axis.
b) Compute the mass of a thin flat plate having the shape of Ω where the density ρ is defined by the function $\rho(x, y)=\sqrt{x^{3}+1} . \quad$ (Hint: use the result from a).)
4. Solid body M is given by $M=\left\{[x ; y, z] \in \mathbb{E}_{3}: x^{2}+y^{2} \leq 4 ; 0 \leq z \leq y\right\}$.
a) Sketch the body M and its projection $M_{x y}$ into the $x y$ plane. (Hint: note that $y \geq 0$.) Transform the body M into cylindrical coordinates.
(i.e. write the transformation formulas, find the bounds for transformed variables)
b) Compute the triple integral $\iiint_{M} z d x d y d z$.
c) Write (one) possible physical (or geometrical) interpretation of the integral from a).
5. The curve $C \subset \mathbb{E}_{3}$ is given by its parametrization $P(t)=\left(e^{t} ; e^{t} ; t\right)$, where $t \in\langle-1 ; 1\rangle$ (C is oriented in agreement with its parametrization P).
a) Compute the work done by the force field $\vec{f}(x, y, z)=\left(\frac{3 z}{y} ; 4 x ;-y\right)$ acting along the curve C.
b) Write down the necessary condition for the vector field $\vec{f}(x, y, z)$ to be potential (conservative). Verify if this condition is satisfied for the given vector field \vec{f} from a).
6. a) Compute the surface integral (of a scalar function) $\iint_{\sigma}\left(x^{2} z+y^{2} z\right) d p$, where the surface σ is a hemisphere given by $\sigma=\left\{[x ; y, z] \in \mathbb{E}_{3}: x^{2}+y^{2}+z^{2}=4 ; z \geq 0\right\}$ (Hint: use the parametrization based on spherical coordinates)
b) Write two possible physical interpretations of the integral from a).
7. Given function of two variables: $f(x, y)=-x^{3}+4 x y-2 y^{2}+1$
a) Compute the partial derivatives of the first and second order of the given function $f(x, y)$.
b) Find the critical points of the function f. (Determine their position, type and function value.)
8. Given function $f(x, y)=\sqrt{1+x y^{2}}$
a) Compute the gradient of the function $f(x, y)$ at point $A=[2 ;-2]$.
b) Write down the equation of the tangent plane to the graph of the given function $f(x, y)$ at point $P=[2 ;-2 ; ?]$.
c) Use the equation of the tangent plane to find the approximate value of $f(2.5 ;-2.2)$.
9. a) Sketch the region $\Omega \subset \mathbb{E}_{2}$ that is bounded by the lines $x=0, x=3-y$ and $x=y / 2$.
b) Compute the double integral $\iint_{\Omega} 2 x y d x d y$.
c) Write two possible physical (or geometrical) interpretations of the integral from b).
10. Body B is defined by $B=\left\{[x ; y, z] \in \mathbb{E}_{3}: x^{2}+y^{2}+z^{2} \leq 1 ; x \geq 0 ; y \geq 0 ; z \geq 0\right\}$.
a) Transform the body B into spherical coordinates.
(i.e. write the transformation formulas, find the bounds for transformed variables)
b) Compute the volume of B, i.e. compute $V=\iiint_{B} 1 d x d y d z$.
11. Given vector field $\vec{f}(x, y)=\left(2 x y+y^{3} ; x^{2}+3 x y^{2}+2 y\right)$.
a) Compute the line integral of $\vec{f}(x, y)$ over the oriented line segment C_{1} from the point $M=[1 ; 1]$ to the point $N=[1 ; 4]$.
b) Find the circulation of the given field $\vec{f}(x, y)$ over a negatively oriented circle $C_{2}=\left\{[x ; y] \in \mathbb{E}_{2}: x^{2}+y^{2}=5\right\}$.
c) Is any of the following functions φ_{i} the potential of the above given vector field \vec{f} ? Justify your answers!
i) $\quad \varphi_{1}(x, y)=y+x^{5} y+x y^{3}$
ii) $\quad \varphi_{2}(x, y)=x^{2} y+x y^{3}+y^{2}+3$
iii) $\quad \varphi_{3}(x, y)=x y^{3}+y^{2}+x^{2} y$
12. Surface $Q \subset \mathbb{E}_{3}$ is defined as a graph of the function $z=g(x, y)=x \mathrm{e}^{y}$ for $x \in\langle 0 ; 1\rangle$ and $y \in\langle 0 ; 1\rangle$. Surface Q is oriented by a normal vector \vec{n}_{Q} that has positive first (i.e. x) component.
a) Chose a suitable parametrization of the given surface Q. Find out if the surface Q is oriented in agreement or disagreement with the chosen parametrization.
b) Compute the surface integral (of a vector function) $\iint_{Q}\left(x y ; 4 x^{2} ; y z\right) \cdot d \vec{p}$
