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Introduction

The presented text approximately coincides with the contents of the Mathemat-
ics II course, taught at the Faculty of Mechanical Engineering in the second term. It
deals with multi-variable calculus (i.e. with differential calculus of functions of more
variables and with multiple, line and surface integrals). Functions of more variables
appear more often in science than functions of one variable and their analysis leads
to a large variety of applications. Since the problems we deal with have a more-
dimensional character, their understanding requires not only a computational skill,
but also a good space imagination. We therefore consider the text not as an indepen-
dent textbook, but as a complementary material to the lectures and exercises where
all the topics will be explained and commented in detail.

The text contains many well known theorems of applied mathematics, like the
Green theorem, the Gauss—Ostrogradsky theorem, the Stokes theorem, etc. The con-
clusions of these theorems are certain integral formulas. The students often identify
the theorems with these formulas. However, you should be aware that the important
parts of all theorems are also their assumptions. It would be naive to think that the
conclusive formulas hold in all cases. The opposite is true - they hold only in certain
specific situations. The assumptions of the theorems represent the brief and simplest
description of these situations and they are as important as the conclusions of the
theorems.

Each chapter contains the section “Exercises” at the end. Many further exercises
and solved examples can be found in the textbooks [1] and [3].

The authors wish to express their thanks to Mr. Robin Healey for carefully read-
ing the text and correcting the language. If you still find some misprints or incorrect
formulations in the text then they are only the authors who are responsible.

We believe that this text will be a useful study aid not only for students who
attend the lectures and the exercises in English, but also for all other students who
study in Czech.



L. Functions of Severa] Real Variables

Functions of several real variables very often appear in mathematics and in
science. You already know many formulas which can be understood as definitions of
functions of several variables. For example, the formula V = wr?h, which determines
the volume V of a circular cylinder from its radius r and height k can be taken as
the definition of function V, which depends on two real variables r > 0,h > 0.

1.1. Euclidean space E,.

In this section, we will recall some notions that you know from the Mathematics I
course. We will deal here with Euclidean space E,,, subsets of E, and its properties.

I.1.1. n-dimensional arithmetic space. If n is a natural number (we use the
notation: n € N) then the set of all ordered n-tuples of real numbers is denoted by
R™. Let us define the sum of any two elements [z1, %2, ..., Za), [y1,Y2, -, ¥n) from R
by the formula:

[1717521-"azﬂ} us lylvy%'"lyn] - [Il =+ Y1,%2 + Y2100y Tn + yﬂ]

and the product of any element [z1,22,...,zn] from R™ and any real number A by
the formula
A [.’C],.’Cz, ...,:.v:,.] = [AE1, /\1}3, saey A.Tn].

The set R™ with these two operations is called the n-dimensional arithmetic space.
Its elements are called arithmetic vectors.

1.1.2. Euclidean space E,— definition. Let us define the distance p of any two
elements X = [z1,%2,...,Zn], ¥ = [y1,¥2, .-, ¥n] from R™ by the formula

X, Y)=(z1 —n1)? + (22 —y2)? + .. + (20 — ¥n)?

The set R™ with this distance p defined for all pairs of elements of R" is called
n-dimensional Buclidean space. This is denoted by E,.

1.1.3. Zero element of E,. The point [0,0,...,0] is called the zero element of E,,
or the origin of E,. The zero element is denoted O.

1.1.4. Remark. Elements from E, are often called points, because E; can be
imagined as a straight line, E; as a plane, etc.
The distance between the zero element O and an arbitrary point X of E, is
denoted |X|, i.e.
1X] = p(O, X).

From this it follows that the distance between X,Y € E, can be expressed in the
following way

p(X,Y) = |X -],

where the diﬁerence X — Y is understood in the sense of n-dimensional arithmetic
space as X + (—1) - Y.

In the followmg paragraphs we will define some properties of subsets of E,,
which play an important role in particular in definitions of continuity and limits of
functions.

I.1.5. Neighbourhoods in E,. If X € E,, then a neighbourhood of the point X
is any subset {Y € E,, : p(X,Y) < £} where £ > 0. The neighbourhood is denoted by
U.(X) or simply U(X).

A reduced neighbourhood of the point X € E, is every set of the type
{Y €E,:0<p(X,Y) < ¢} where ¢ > 0, i.e. Ue(X)— X. This neighbourhood will
be denoted by R.(X) or only R(X).

1.1.6. Interior point. Let M C E,. A point X € M is called an interior_point of M
if there exists a neighbourhood U(X) such that U(X) C M.

1.1.7. Accumulation point. Let M C E,. A point X € E,, is called an accumula-

tion point of M or a point of accumulation of M if in every reduced neighbourhood
R(X) there exists at least one point ¥ which belongs to M.

1.1.8. Remark. If you read this definition carefully, you can see that if X is an
accumulation point of M then in every neighbourhood U(X ) there exist an mﬁmte
number of points which belong to M.

From the definition it also follows that even if X is an a.ccumulatmn point of M
then it is possible: X & M.

1.1.9. Isolated point. Let M C E,. A point X € M is called an isolated point of M
if in some reduced neighbourhood R(X) there is no point which belongs to M.

1.1.10. Remark. The following assertion holds:
If M is a subset in E,, X is any point of M and Xis not an .lEOlB.tEd pomt of M,
then X is an accumulation point of M.

If M is a subset in E,, X is any point of M and X is not an accumulation pom’c of
M, then X is an isolated point of M. 4

I.1.11. Boundary point. A point X € E, is called a boundary pa:'nt.of a subset M
if in every U(X) there exists at least one point which belongs to M and at least one
point which does not belong to M.

1.1.12. Open set. A subset M of E, is called an open set in E, (or shortly: an
open set), if every point X € M is an interior point of M.

1.1.13. Examples. See Fig. 1. The following sets are open in E;. Sketch the fourth
one:
0? Eﬂ:

{X €E; : p(0,X) <5},
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{[z,y] € Bz : p([1,0,[z,3)) <1}V {[e,0] € Bz : 2 € (=2 -1)}

1.1.14. Closure of a set. Let M C E,. A closure of subset M in E, (or short]y} a
closure of M) is the name given to the union of M with the set of all accumulation

points of M. The closure of subset M in E, is denoted by M.

L1.15. Closed set. A subset M of E, is called a closed set in E, (or shortly: a
closed set), if M = M.

e b Fig. 2.

The set {X € Bz 7p(X,0) < 1} contains each

2 i t {X € Ba: p(X,0) < ] . :
bbbt e : d its boundary point, i.e. this set is closed.

is an interior point, i.e. this set is open.

1.1.16. Examples. The following sets are closed in Ej:
o, E, X {X€E2:P(01X)i‘5}a ;

{[z,y] € Ex ¢ p([1,2],[z,9]) < 1}U{[e,y] € Bz : z € [-2 -1y € [0;1]}

1.1.17. Remark. We can prove that the complement of an open set in E,, is a closed
set. and vice versa.

1.1.18. Boundary of a set. Let M C E,. A boundary of M is the name given to
a set of all boundary points of M. The boundary of M is denoted by OM.

1.1.19. Examples.

The boundary of {X € Ez : p(0,X) <5} is {X €E; : p(0,X) =5}

The boundary of {X € E; : p(0,X) <5} is {X € Ey : p(0,X) =5}

The boundary of {[z,y] € By : z € (=2;-1)} is {lz,y) EEz : 2 =—-2Vz=-1}.

1.1.20. Remark. We can prove that the boundary of an arbitrary set M in E, is a
closed set. We can also prove that M = M U dM, see Fig. 2.
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1.1:21% Line segmentiin B;,. Let A, B € E, and A # B. The set of points X such
that X = A4 #(B — A), t € [0;1] is called the line segment in E, and it is denoted
it by AB. : /

1.1.22.° Remark. The formula X = A+#(B — A) should be understood in the sense
of n-dimensional arithmetic space as X = A +¢- (B + (—1)- 4).

1.1.23. Polygonal line in E,. Let 4;, Ay,... A, € E,, r be a natural number
r > 2 and A; # Aiy1,4 = 1,2,...,r — 1. The union of the line segments

AjAs UAA3 UL UA A,
TR i
is called a polygonal line connecting points Ay, A,.

1.1.24. Domain in E,. Let D be an arbitrary open set in E,. If for an arbitrary
pair of points of D there exists a polygonal line connecting these two points and
entirely belonging to D, then D is called a domain in E,.

1.1.25. Examples.

The set {X € E; : p(O,X) <5} is a domain in E;.

The set {X € Ey : p(0,X) <5} isnot a domain in E,.

The set {X € E; : p(0,X) <5} U {X € E; : p([-10.0],X) < 5} is not a domain
in E;. .

The set {X € E; : p(0.X) <5}U{[5,0]} is not a domain in E,.

1.1.26. Bounded set in E,. A subset M of E, is called bounded if there exists
r > 0 such that VX € M : p(O, X) <r. i

1.1.27. Examples.

The set {[z,y] € Ez : z € (—2;—1)} is not bounded.

The set M = {[x,y] € E3 : z € (—2;-1), y € [0;1]} is bounded, because it holds for
instance VX € M : p(0,X) < 3. :

1.1.28. Limit of.q sequence in E,. The element A € E,, is called the limit of a
sequence {AM}, A®) € E,, fori=1,2,... if

VU.(A) 3ng€N VieN: (i >ng) = AD € U.(A).

(We read it: For every neighbourhood U, (A) of the point A there exists no € N so
that for all i € N it holds: If i > ng, then A® € U,(A). The fact that A is the limit
of the sequence {A(‘)} is written down in this way: limA®) = A4 or A% 5 4. We
also say that the sequence {A(‘.)} is convergent or the sequence {A(i)} converges to
point A. '

1.1.29. Remark. The definition of the limit of a sequence in E, uses the notion of
a neighbourhood of a point in E,, but formally it is very similar to the definition of
a limit of a sequence in R*, see [4], ITI.1.4.
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On the other hand, the definition of the limit can be overwritten in the following

iyl Ve>0 dnp €N VieN: (izno)#p(A("),A)<s

This means that the limit of a sequence in E, can also be deﬁned in a.no.ther way:
The element A € Ey, is called the limit of a sequence {A9}, AG) g By, fori=1,2,...
if the sequence of real numbers {p(AD), A)} converges to 0 ER. -

1.1.30. Theorem. Every sequence in E,, has at most one limit.

i 1. 4]. The neighbour-
The proof is analogous to the proof of Theorem II.I 1.8, see [
hoods in 11){“ must be replaced by the neighbourhoods in Ej, but the scheme of the

proof is the same.

I.1.31. Remark. Note that AW = [a(li);a(zi),...,as.i)]. The question is what is the
relation between the convergency of the sequence {A®} and the convergency of
{agi)} ) {ag'.)} e {ag)}. The next theorem shows that this relation is

very natural.

sequences

1.1.32. Theorem. The sequence {49}, A®) = [a(l‘.),ag'),...,as.'?] €E,, fori =
1,2, ... converges to the point A = [a1,a2,...an] € En if and only if every sequence

{a(ri)} , converges to the number ar, forr=1,2,..,n.
1.1.33. Remark. The proof of this theorem is based on inequality:
; | . (). L=
|a8? —ar| < p(A(I?,A) <+ SG{Ilr,lia,f.n} |al? —a,| fori=1,2,
1.1.34. Example. Find the limit of the sequence {X()} in E3 where

sin(k) k2 —7k 3]
k '6-5k—2k2"k|

x) =

Solution: First, we find the limits of each coordinate:

sin(k) e ik g
=0 Imemmta Ty B o

lim

Further, using Theorem 1.1.32 we get lim X® = [0,—-3,0].

1.2. Real functions of several real variables.

L2.1. Real functions of n real variables — the definition. T M C E,, n€ N,

then each mapping of M to E; is called a real function of n real variables (shortly:

a function).

I.2.2. Domain of definition, range, graph. A function is a special case of
a mapping and the notions ”"domain of definition of a mapping” and a "range of
mapping” are known from secondary school. Hence, the notions ”domain of definition
of a function” (shortly: domain'of a function) and "range of a function” (shortly:
range of a function) can be regarded as known. In accordance with the notation
which is used in connection with general mappings, D(f) will be the domain of
definition and R(f) will be range of function f.

A graph of function f of variables zy,z,...,z, is the set
G(f) = {IX, f(X)] € R™ : X = [z1,83,..,24] € D(f)}

1.2.3. Remark. Let f be a function of n variables and let X = [z1,%3,...,2a] belong
to its domain. The value of function f is denoted by f(X) or by f(z1,z3,...,Zs).

I.2.4. Example. : ;
Let f be a function of two variables z,y, which is defined for all [z,y] € D(f) =
[3; +00) x R by its function value: f(z,y) =z —3.
Let g be a function of a single variable z, which is defined for all z € D(g) = [3; +00)
by its function value: g(z) = vz —3.

Although the values of functions are defined in both ccases by the same formula,
frand g are different functions with different domains of, definition D(f) C E,,
D(g) C E;. .

1.2.5. Operations with functions. Let f, g be functions of variables z;,z3,...,Zn,
D(f),D(g) C E,. A sum of functions f and g is a function h such that h(X) =
f(X) + g(X) for X = [z1,23,...,2a] € D(f) N D(g). Thus D(k) = D(f) N D(g). We
use the notation h = f + g.

We define a difference of functions and a product of functions f and g by ana-
logy. A guotient of functions f and g can also be defined similarly - however, its
domain is the set [D(f) N D(g)] — {X € D(g) : g(X) = 0}. ¥

1.2.6. Restriction of a function. Suppose that f is a function and M C D(f).
A function which is defined only on M and which assigns to each X € M the same
value as function f is called the restriction of function f to set M, and it is denoted
by flm. The set. of all function values of function f on set M can be denoted by
R(f|a) or by f(M).

1.2.7. Composite function. We assume that function f of n variables y1,¥2, ..., ¥n
is defined for each ¥ = [y1,42,.-Ys] € D C E, and functions ¢1,4,..., gn of m
variables 1, T2, ...,z are defined for each X = [z1,22,...Tm] € @ C E,,. Let

[$1(X), $2(X), ..., #a(X)) € D for X € Q.

Then the function
F(X) = f(#1(X), ¢2(X), ... (X))

9



defined for each X € 2 is called a composite funetion.
1.2.8. Remark. We denote as ¢ the mapping defined by
@(X) = [él(x)u ¢2(X)1 sery ‘i’n(X)] for X € Q.

The mapping ¢ is called a vector valued function of m variables, with D(¢) C Ep

and R(¢) C En.
The fact that F is defined as a composite function by the relation

F(X)= F(e1(X), 2(X), vy Pn(X)) for X €82

is denoted
F=fo¢.

1.2.9. A bounded function. Function f is called bounded above (or upper bounded)
if there exists a number K € R such that VX € D(f) : f(X) < K. We can by analogy
define the function bounded below (or lower bounded). Function f is called bounded
if it is bounded above and bounded below.

Assume further that M!C D(f). Function f is called bounded above on set M if
there exists a number K € R such that VX € M : f(X) < K. We can similarly define
the function bounded below on set M and the notion of a function bounded on set M.

1.2.10. Extremes of a function. We say that function f has its mazimum at the
point A € D(f) if VX € D(f) : f(A) = f(X). We write:

max f = f(A).

Analogously, we can define the minimum of a function f. We denote it min f.

Suppose that M C D(f). We say, that function f has its mazimum on set M at
point A€ M if VX eM: f(A) = f(X). We write: maxy f = f(A). Other often

used notations of the maximum of function f on a set M are

: max f, max f(X ).
Analogously, we can also define the minimum of function f on set M. We denote it:

miny f, mﬂnfa }(ﬂéi‘?‘f(x)'

The maxima and minima of function f are called the estremes (or eztrema ) of

function f.
The maxima and minima of function f on a set are called the extremes on a set

of function f.

L.2.11. Remark. Obviously, the extremes of function f are special cases of the
extremes of f on a set. ) :

10

I.3. Limits and continuity

(Iie:}i;t ioI;lil{':tJ_i: fc;i ;i :::}czim:.'Assume that C € E’” y € R* and the domain of
for each sequence {X (¥} innR?lcl‘l; :1:3:;]?::&5 e
{X(")} S C= f(XD) oy
is true, then we say that function f has the limit at point C equal to y. We write

lim =y.

X=C

Assume that y € R* and the domain of definition of a functi .
following aats 100 a ction f contains the

R, (00) ={X €E,, |X|>r} forsomer >0
If for each sequence {X(V} in R,(co0) the implication

{pf(")]} - 400 = (X)) 5y
is true, then we say that function f has the limit at infinity equal io y. We write

Am =y

Further, we generali.ze the definition of the limit of a function at a point in order
to.bc able to define a limit not only at point X for which there exists a reduced
neighbourhood R(X) such that R(X) C D(f).

I.3.2_. _Limit of a function with respect to a set. Assume that the domain of
definition of function f contains some M C E,, C € E; is an accumulation point of
M, and y € R”. If for each sequence {X (9} in M the implication

{x0} s 0= fxD) oy

is trus 3 1 ‘3 it at 1 (] wit respe(:t to
e then we say that iullctloll hﬂ.ﬂ the 1k poin h
set M

lim f(X) =y

X=cC

malin 01 deﬁnl tion of fuIlCthD f C alns some (
Assume that the do dnt:
M Eﬂ, Such

Ry(0) ={X €E,, |X|>r} r>0

contains at least one point of M, and assume that y € R*. If ;
in M the implication . : ‘for each sequence {X ( )}
{EX{i)I} — 400 = f(XD) 5y

18 true, then we say tha-t iu—ﬂCtlon f hﬂs the l"nut at Inﬁﬂit‘t" wzti’i respect to set
M

lim =
XEM v
|X]|= 400

11



1.3.3. Remark. ‘. ' :
From the definition it follows that if there exists lim f(X) then there exists

lim f(X) for each M C D(f) with accumulation point C and
XeM ,
X=C

lim £(X) = Jim F(X).

X—=C

The next theorem is an easy consequence of Theorem 111.1.8, see [4].

1.3.4. Theorem. o
Function f can have at any point C € E,, at most one limit.

Function f can have at infinity at most one limit. o
Function f can have at any point C' € E,, at most one limit with respect to a set M.

Function f can have at infinity at most one limit with respect to a set M.
1.3.5. Example. Let f bea function of two variables defined by

1 ifz-y=0

f(z,y)={0 fz-yt0 for [z,y) € Ez

Prove that the function has no limit a point [0,0].

Solution: Assume the sequence {[%,2]}. This sequence converges to point [0, 0], see

1.1.32. The function value f(3,1)=0foralln= 1,2,..., hence f (,1) —=0.
Assume the sequence {[%, 0] } . This sequence also c:)mrerges to point [0,0]. The

function value f (1,0) =1foralln=1,2,... hence f (1,0) = 1.

Thus, the function has no limit at point [0,0].

1.3.6. Example. Prove that function f from the previous example has a limit at
p.oint [0,0] with respect to the subset M = {[z,y] € E2:2>0Ay > 0}.

Solution: We can 'see that [0,0] is an accumulation point of M. It is clear from the
definition of f that for all points X € M we get f(X)= 0..Hence, for‘eu.cry sequegc:
{X®}, X® € M it holds F(X®) — 0. Thus, the function f has limit 0 at poin
[0,0] with respect to set M.

The following theorem is fully analogous with iihe theorem a.bm‘.xt the limit oic'l th:
functions of one real variable. It concerns the ]_.imlt of the_ sum, d.\ﬂ:eregce, produ;):
and quotient of two functions of several real variables, and it can easily be proved by
means of Theorem I11.2.13, see [4].

We use the symbol "#,” which has the meaning of any of the symbols ” +7,

n ” ” n
w_m om.? /™ here.
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1.3.7. Theorem. Let C € Ey,, a,b € R*. Let lim f(X)=a, lim g(X) =0
Then lim [f(X)#4g(X)] = a#tb (if the expression has a sense).

" LetabeR". Let lim f(X)=aq, lim g(X)=b. Then

1X|=+oo ! 1X| =400

lim [f(X)#49(X)] = aftb (if the expression has a sense).

1X]=4+

1.3.8. Continuity of a function at a point. We say that function f is continuous
at the point C € D(f) CEn if .

lim £(X) = £(C).

1.3.9. Continuity of a function. We say that function f is continuous if f is
continuous at each point C € D(f). i

1.3.10. Remark. If you read the definition I.3.8 and definition I.3.1 carefully,
you will see that function f can be continuous at point C' only if it is defined in
some neighbourhood of C (i.e. if D(f) contains some neighbourhood U(C'). But this
condition is satisfied for each point of D(f) only if D(f) is an open set. We will now
study a more general situation.

1.3.11. Continuity of a function at a point with respect to a set. Let
M C D(f) C E, and C be an accumulation point of M. We say.that function f is
continuous at point C with respect to set M if - AL

Lim f(X) = f(C).

X=C

Let C be an isolated point of M. Then we also say that function f is continuous at
point C with respect to set M. il

TR ; s oo : -., :

1.3.12. Continuity of a function on a set. Let M C D(f) C En. We say that
function f is continuous on set M if f is continuous at each point C € M with
‘respect to set M.

.1.8.13. Remark. You can see from the definition that if a function f is continuous

on a set M and Mj C M then function f is continuous on set M;.

1.3.14. Theorem (on continuity of the sum, difference, product, quotient,
and absolute value). If functions f and g are continuous at point C, then also the
functions f + g, f — g, f - g, and |f| are continuous at C. If, in addition g(C) # 0
then the function f /g is also continuous at point C.
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(This part of the theorem is also valid whpr,l° we replace " continuity at point C”
b.y # continuity at point C with respect to set M”.) .

If functions f and g are continuous on set M, then also the functions f +i’4f ;g,
f - g, and |f| are continuous on set M. If, in addition g(X) # 0 for all X € M then
the function f/g is also continuous on set M. .

1.3.15. Example. Let f be a function of two variables defined by

22 it [2,y] #10,0]
I £ 7 if [z ) for [z,y] € Ez
9(zy) { il if [z,y]=100,0]

a) Prove that function g is continuous on E; — [0,0].
b) Prove also that function g is continuous on axis z, i.e. on the set {[z,y] € Ez:
z e R1 y = O}‘
Solution:

From the previous theorem it foll \ . ;
?;2 ] # [0,0]. At point [0,0] the value of function g is defined, but g, we claim, has
Nt , We show the proof by contradiction. We suppose that there

imit at point [0,0].
no limit at point [0, ] [z,y) €Es 1 y = mz}. Then for every M we

exists lim g(X). We denote M = {
X —+[0.,0] s

have S § i
)lriglllg(X) = lim g(X).
X —+[0,0

We calculate the limit at point [0, 0] with respect to each defined set M:

| = g tp= lim _28y
" lm ¢ - e = MR TERY
X0l e T Y [ 00l 22 + y
h 2zmz 2m
4= lim =

240 12 +m2$2 e +m2'
Because the value depends on m, we have a contra.dif:tion, see Bgmmk 1.3.3. Hence,
" the limit of g at [0,0] does not exist, and function g is not continuous at [0, 0].
b) The set {[z,y) €eEz : z € R Ay =0} is aset M from a) with m =.0. From the
same calculations (where now m = 0) we get . ]
lim g¢(X)=0.
X —+[0,0)

We have g(0,0)=0, s0 g is cc_intiﬂdous at [0,0] with {'_éspect to {[m,y} : z € RAy =0}
(In other points is ¢ continuous.) Hence, g is continuous on axis .

(on continuity of a composite: function). We assume that
[b1.b2,...bn), functions d1. P2, ..., G are con-
A),...,a(A)]. Let us denote

1.3.16. Theorem :
. function f is continuous at point B =
tinuous at point A = [a1, az, ..y) and B = [#1(A), d2(

14

ows that function g is continuous at any point

& = [p1, P2, ..., @), i.e. @ is a vector valued function defined by coordinate functions
&1, P2, ...y Pn. Then composite function F = f o ¢ is continuous at point A.

We assume now that function f is continuous on set D, functions ¢y, ¢a, ..., ¢y
are continuous on set Q and $(X) = [¢1(X), ¢2(X), ..., ¢a(X)] € D for X € Q. Then
the composite function F = f o ¢ is continuous on set §2.

1.3.17. Theorem (Darboux’ property). If function f is continuous on a domain
M and A, B are any two points from M, then to any given number Y between f(A)
and f(B) and to any polygonal line L C M connecting A, B there exists a point
X € L such that f(X) =Y.

1.3.18. Theorem. Function f, which is continuous on a bounded closed set M, has
its maximum and minimum on this set M. (Thus, max f(X) and }r{rgﬁ f(X) exist.)

1.4. Partial derivatives, differentials.

When we hold all but one of the independent variables constant and derive with
respect to that one ‘variable, we get a partial derivative. For example, the partial
derivative of a function f(z,y) with respect to = at point [zq,yo] is the value of the
derivative of the function of one real variable f(z,y0) at point zo.

1.4.1. Partial derivative of a function. Let f be a function of n real variables
T1,%2,...,&n and A = [a1, a1, ...,a,] € E,. If there exists a finite limit

i flai,az,....ak_1,a; + h,apq1,...,an) = flar, aa, ..., Ge—1, Gk, Gky1, .. Gn)

h=0 h
then its value is called the partial derivative of f with respect to z; at point A. It is
denoted by
af af
— (A — .
Oz G Ok |4

"Let us assume the set of all points A for which a%-'%(A) exists. The function defined

by its function value £L(A) in this set is called the partial derivative of f with
respect to xx. This function is denoted by

of
Oz’

&3

From the definition it follows that
a
D|— .
(35) o

1.4.2. Remark. Let g be a function of one real variable z; defined in the following

" way:

g(zk) = Flag,az, .. Gk—1, Tky Gkt1; s An)

15



From the definition it follows that the partial-.der'}va.tive of f .with respef:t to Tk I;:t the
point A = [a1,a2, ay,) is defined as the derivative of function g at point ak. blenc:,
to calculate the partial derivative with respect to :r:g we asume‘other var;?]; es aﬁ
be constant and calculate the derivative of a function of one varl‘ablc‘a zx. Thus,
theorems about calculation of derivatives also hold for partial derivatives.

Let now f: f(z,y) then %ﬁ(a, b) = ﬂgﬁf;"—)z

= tan a, see Fig. 3:
a

12z |
[x,b,f(x,b)]
g z=f(x.y)
iy f4
[a,b,f (a,b)]
[a,b,0]
Fig. 3. :

L.4.3. Example. We calculate the partial derivatives of function f of three variables

z,y,z given by the formula flz,y,2) = Va2 +y* + 2%, [z,y,2] € E;. Deriving the

expression with respect to r we regard y and z as constants and we get (using the

formula about the derivatives of composite functions of one variable):
% Sl - S
a(zayvz)'_z mz+y2+z7 \ﬁ2+y2+22

Analogously, we get
y of ol

9 —_—_— —(z,y,2) = —/—
REvd) = g %) Jarae
D(f) =Es, D(3)=D(%)=D(§E)=Es —{[0,0,0]}-

L4.4. Remark. Let us suppose that the function f(z,y) 'has partial deriv.a.tivE:s
%t %ﬁ at point [zq,yo]. What can we say about the behaviour of the function in
z? Oy

16

the neighbourhood of point [zo,y0]? For example, is this function continuous at this
point? .-

1.4.5. Example.
_J1 ifz.-y=0
f(z?y)_{o ifz-y#l)

The partial derivatives at point [0,0] exist, but the function is not continuous at [0,0],
see 1.3.5. (Because f(z,0) = f(0,y) = 1 for z,y € R, we get %(0, 0) = %f({l,{)) =0

In the next paragraph we will solve the question of the functions that can be
well approximated by a linear function in the neighbourhood of some point.

1.4.6. Differentials. Let function f be defined in ai neighbourhood U(A) of point
A =[ay,a3,...,an] € E, and forevery X € U (A) let the following relation be satisfied:

f(X) = f(A) = [oa(z1 — @1) + aa(22 — G2) + ... + @a(Tn — an)] +6(X) (14.1)

where a1, @3, ..., @n are some real numbers, £(X) is a function continuous at point A,
e(4) =0, and ; -

&§X) _ :
lim p(X,.A)_— 0. (1.4.2))

Then the function is called differentiable at point A and the linear expression
lai(z1 — a1) + @2(z2 — a2) + ... + @a(zn — an)]

is called the total differential of function f at point A, and is denoted by df(A).

1.4.7. Remark. If the function is differentiable at point A, it follows from the
definition that it must be defined in some neighbourhood of this point. -
Relation (I.4.1) means that the function value f(X) can’'be approximated by
the linear function
f(4) +df(4),

ie. f(A)+[a(e1 —a1) +az(z2 — @) + ... + an(zn — an)]. (1.4.3)
The "error” function of this approximation equals £(X.). From the relation

e(X) _
X+4 p(X, A) sk

i.t_..rf‘c.)llows that this "error” is essentially less than the distance between X and A.

1.4.8. Geometrical meaning. If n = 2 then the graph of f(X) in the neigh-
bourhood U(A) is a surface in E3 which contains the point [4, f(A)]. The graph of
function (1.4.3) is a plane which contains the point [A, f(A4)]. Relations (1.4.1),(1.4.2)
mean that the plane is the tangent plane to the graph of function f(X) at the point

(4, f(A)].
17



We will formulate two theorems which state the relation between partial deriva-
tives and the differentiability of a function. Differentiability is an important property

of a function, being the condition in a number of theorems.

1.4.9. Theorem. Necessary condition of differentiability at a point. If
function f(X) is differentiable at point A then f is continuous at A, and there exist
partial derivatives at this point

af af af
E‘T(A)’ 53;;(/1}, 5;:(A)

and the constants from the definition of a differential a1, az,...,Qn are equal to these

derivatives, i.e.

() = LA — ) + o Aer —ea) +oot 21 (A)(an - au)

1.4.10. Theorem. Sufficient condition of differentiability at a point. If the
function f of n variables &1,%2,.., Tn has its partial derivatives

or o O

3:51 ! 8:1:2 I az,.

in a neighbourhood U(A) and the derivatives all are continuous at poiut A, theu
function f is differentiable at point A.

The next assertion is an easy consequence of the previous theorem.

1.4.11. Theorem. Sufficient condition of differentiability on an open set.

If function f has partial derivatives
of of of

8z, 0z2" "7 B2n

in an open set M which all are continuous on this set M, then function f is differen-

tiable at every point of M.

1.4.12. Example.

We find the equation of the tangent plane to the graph of function f given by
the formula f(z,y) = z* +y? + 2z —y — 7 at the point T =[A, f(4)], A=[3,4].
Solution: We easily get f(A) = 32442 1 6—4—T = 20. There exist partial defivatives
%é(a:,y) = 2z + 2, %g(n:,y) = 2y — 1. We can see that &, %5 are defined and
continuous on Eg, and therefore on some neighbourhood of A = (3,4]. Hence, f is
differentiable at A and i

of

ua) = L @-a+ %L{y—m — 8(c—3)+7(y—4).
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The tangent plane is the graph of the functi . i
ickpe . i nction f(A) + df(A). The equation of the

z=f(A) +df(A) ie =z=f(A)+ %f.
ZlA

g a ;
(- a)+ B_ﬂd(y—dz)-

Hence we get:
= 2048@-3)+7(y-4)

We can calculate the partial derivati i

: atives of composite functi f i
ables by using the so called Chain rule. You already know the iﬁ:ysz¥e:$ varll-
for functions of one variable. Comparé the two formulations e

1.4.13. Derivatives of composi i i
: : posite functions - Chain rule. If functi
@2(X), ..., ¢n(X) are differentiable at the point A = [a1,as,..., am] mdcf::::iifrll(fi);

differentiable at the point B = i
g pus fc’mp-1 - [#1(A), $2(A), ..., #n(A)] then the composite function

F(X) g f(’;bl (-X)s (“’Z(X)l reey d’ﬂ(-x))
in some neighbourhood of point A is differentiable at this point and for k = 1,2,...,m
oF of ,

o 01 of ,_. 04 :
—(A) = —=— ol Sl lp ——— a
Bu( ) o (B)axk (A) + o B)@:r::(A) +.. 5{(3)322‘(:4). (I.4.4)

1.4.14. Examples.

-Let f be a function of two variabl
: : es u,v and let ¢;,¢2 be functi i
variables z,y. A composite function F is defined by its functi;n ;:alue-c e

R R ey

Find the expressions of 2 and 2E . .
oz 5y (Functions f, 41, ¢, are assumed diff :
- and [b1(2.9), d2(2.)] € D(f) if [z,3] € D(é1) N D(é2).) g

SOIut.lO]l. TO S]mphfy the ex S t us denote as qﬁ the vector valued funcl',mn
L pressions, ]e d 5
deﬁned by its flulctloﬂ \’a.lLle.

e

_ ¢(z,y) = [¢1(2.y), d2(2,y)] for [2,y] € D(¢) = D(¢1 N é2)
Using the Chain rule we get: - |

oF, . of a9 9

o (@) = g8 u) B o) + L (6, 0) T2 )
oF . df . B¢, . @ 3¢

oy DY) = 5;(¢(z,y)Ja—;(w,y) + a—i@(%u))%(z,y'}

19



7

oF _0f 04 010
Bz Oudz v Oz

Shortly:

OF _0f8¢1 01942
By oudy vy

i be functions of one variable
function of two variables u, v and let 't’"’? : : 7
z axf:: tb?:z};e; zﬁ composite function G is defined by its function value: ...
G(z) = f(z,¥(2))

i i iable and [z,¥(z)] € -
Find the expression of 4€ | (Functions g, are assumed d.l?'erentm e and [z, ¥(z)

D(g) if = € D(¥)-)
Solution: Using the Chain rule we get:

: i) dy
4 4y 2 Lo pe) 1+ ¥ Z
. &) = Liavta)) + G v @)
or shortly:
4 O Uy

T

1.4.15. Higher order derivatives. Let the function f of n variables z1,%2, ..., Zn

have a partial derivative -gf: in subset M, k € {1,2, ...,n}. This partial derivative is

also a function of n variables. If there exists a partial derivative of this function, 1.e.

3
2(2£)
azl i
in some set Mz C M then it is called a partial derivative of the second order, and it
in sor o f

is denoted by

le{1,2,..,n}

oA i FI ark=1).

anazk o -6_37,‘

‘ i ivati scond order of
1.4.16. Example. Find the 2:a.ll partial derivatives of the first and sécond order

the function f : f(z,¥) = eV,
Solution:

6 zy? _a_f_ = y?
-a—‘i(x,y) =y ay(z,y) €V 2zy,

20

E%(z, y) - e"zy“, %(z,y} = e"’z2xy 2zy + V2 = 2ze”'2(2xy2 +1),
>*f
Oyoz

3%("'-”) = &'y 20y + ¢V 2y = e (zy” +1)

(z,y) = e 20y y® + €™ 2y = 2ye™ (ay? +1),

Function f and all partial derivatives of the first and second order are defined and
continuous in Ej.

1.4.17. Remark. By analogy, we can define partial derivatives of the third order
etc.

" 5 2 2 :
In the previous example we derived %.f; = ';Ea% , but in general 5 z’a[“ # ;9:;, '

The next theorem states the sufficient conditions which ensure that partial derivatives
differing by the order of differentiation define the same functions.

14.18. Theorem. Let function f have partial derivatives 3‘?,!:, az‘ ykl=1.2 . .n
k # ! in a neighbourhood U(A). Let 52— be continuous at point A. Then there
. 2 '
exists ﬁ%gx_.(“l) and
ot fiod
Oz 0z AL Oz10z; ‘A.)'

5. Gradients, directional derivatives.

Gradients. If function f of n variables denoted by z;,z3,...z, has all its
ial derivatives at point A, then the vector

o, .. o af g

3::1 (A): 332 (A)1 ey Tu(A) €E,

led the underbargradient of function f at point A, and it is denoted by
(grad )(4), (VA)(A), (gredf)las  Vila-

e gradient of a function f exists at points of some set M, the vector function given
the relation ®(X) = (grad f)(X), X € M is called the gradient of a function f
it is denoted
gradf or Vf.
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1.5.2. Directional derivatives. In this paragraph we will generalize the notion of

ial derivative. ~
¢ pmlt::at f be a function of n real variables T1,Z2, .-y Zn, A =ay,az,. an) be some

given point A € E, and 3= (s1,32, wn8n) # O a given vector. We denote by S

§ S _(nsm s
5= (313325---5'1) Z'E = (‘ﬂ’ Ig],..., L‘_ﬂ)

If there exists the limit , |
—' - Snt _f 41,82, 8n
li f{A+St)_f(A) =71imf(‘11+51t,02+52ta :an+ n) (
¥ t t=0

t

t—0

7 at point A, and it is denoted

it is called the directional derivative of f in direction

by %{;(A).

5 AHS
Fig. 4.

L.5.3. Remark. It is clear that this definition is a general:ization oi_" the notion ofua;.
pa.rtml derivative. Indeed, if we choose in this definition for instance &= (1,0,0,...,

we will get the definition of %(A).

is also clear that this definition is identical with the definition of

k. It 118 i _ ‘
e v nction of one real variable t at point 0:

the derivative of the following fu

f(a; + Sit,az + Sat, a0 Snt)

22

This is a composite function of function f and a vector function @, the value of which
is defined by the formula :

®(t) = [a1 + Sit,az + Sat,...,an + Sat].

Assuming differentiability of f and using formula (I.4.4) we get

af dd
274 == 0)=
_Of pHart$it) o Of dlatSit) O g dlan+Sat)
=g A O+ g (A=) +.. + () === (0) =
= :7{(:4) 51+ :T’;(A) Sz 4 ..+ %{A) Sa = §-(grad f)(A).

Hence, assuming the differentiability of a function f at point A we derive a formula
for the directional derivative at point iA.:

of .\ _ & (grad f)(4)
() = LA

131
I.5.5. Remuk. Because @ - b = |&'||3f cos a, where a is the angle between @, b we
get:
Of 4y _ 3 (grad f)(4) _

Thus, if the angle a between (grad f)(4) and § equals zero, the directional derivative
is maximal. i.e. the gradient at a point is the direction in which the increment of the
function (in a sufficiently small neighbourhood) is maximal. g

1.5.6. Example. Find the directional derivative 3£(A4) if A =[1,2], §=(1,1) and
f: flzy) =2 +ay.
olution: We define the unit vector § :
£ L1 0t
= V12412 =3, §=2_1 (.__’_)
sy R R Wy,
- Further, we get expressions for the partial derivatives of f

. .. These partial derivatives are defined and continuous in E,. Thus, function f is
erentiable at each point of E;, in particular at the point A = [1,2]. Hence,

% a) = 5= ff o _,1 1 3
%(A)—(Sra.df)h = 33A51+6y‘A52_4\/§+1‘\7§—7'§-
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1.6. Implicit functions.

1.6.1. Examples. Let us assume the equation z? + y? = 1 and the point X =
[zo,%0] = [52@, 3/—5] (Draw the sketch.) It is clear that the equation defines some
function f : y = f(z) in the neighborhood of the point zp = £ , such that f(lC)
£ Indeed, we get from the equatmn y= Vi or y= —\/_T?" Taking into
a.ccount the condition f( £) we get y = f(z) = ++/1 =22, This function has
the followmg properties: :
8 = . c
The functmn is defined in some nelghbourhood o‘f Zp, i.e. in the mterva.l ({—5 &; ;._;2 +
5), (here § = 1 — 22),

If we substitute f(z) into the rela.tlon x4yt e fwe get.a.n 1dent|ty 2+ (f(2))? =
1=1=1

There is at most one such function. (There is.no such funqtmn for instance if we
choose the point A =[1,0] or A =[-1,0]).

The graph of the function f locally cointides with the "graph” of the equation, i.e.
there exists é > 0, such that

{[x,y]e(%—6;§+J)x(§.—5;¥+5) Ty =

m}=

{[my]e(i— Y215 x (£—5£+a) 12+y2=1},

This section deals with the conditions that ensure the existence of such a func-
tion, even if we are not able'to express it éxplicitly from the originally given equation.

Let us assume an another example. There i given the equation
e’ +z — 10 = y.+ tan(y) (1.6.1)

It is easy to see that f(z) = €% + & — 10 is a continuous increasing function for
z € (—o0;+00), R(f) = (—o0;+o0) and function g(y) = y+tany is also a continuous
increasing function on each intervaly € (—F+km; 54km),k € N, R(g) = (—o0; +00).
Due to these properties of the functions f, g it is clear that for every z € (—oo; +o0)
there exists the unique y € (—F; 5-) such that equation (I.6.1) is satisfied. Hence,
by means of (1.6.1) a function ¢y.is defined with the domain of definition D(¢g) =
(—o00; +00) and the range R(¢o) = (—%; ). Since the function value of ¢ is defined
as a solution of some equation and the analytic expression of the function value is
not known, the function is called an implicit function.
If we substitute function ¢g into relation (1.6.1) we get an identity:

Vz € (—oo;+00) : e + z — 10 = ¢o(z) + tan(¢o(z)).

24

We can keep repeating k € N : For every z € (—c;o; +00) there exists the unique
y € (=5 +km; 5+ k) such that equation (I.6.1) is satisfied. Hence, by means of this
relation we can define a function ¢; with the domain of definition .D(gb;,) = (—o0; +00)
and the range R(¢¢) = (—=F + km; § + k).

If some point [zo, yo] satisfying relation (1.6.1) is given, then this relation defines
a unique function ¢, such that yo = qSk(zu)

Relation (I.6.1)) can be written in the form F(z,y) = 0. The following theorem

states sufficient conditions which ensure that the relation F(z,y) = 0 defines an
implicit function.
1.6.2. Theorem. Let F be a function of two variables which are denoted z,y. We
suppose that F' and partial derivatives 4=, % are continuous in some neighbourhood
U(A) of the point A = [a,b]. We assume that F(A) =0 and 5y (4) # 0. Then there
are § > 0,& > 0 such that the unique function f is defined in a. Way that satisfies the
following properties:

) b= f(a)

b)Vz € (a—d;a+4d): f(z) € (b—eb+e) and F(z,

c) f,f are continuous in (a—&;a+4d)

d)Vz € (a—b;a+6)

f(z)) =0.

fr(m) - B_QF;E (.'L', f(z)) (1.6.2.)

% (@, £(z))

Moreover, if all partial derivatives of F are continuous in a neighbourhood U(A)
up to the k-th order, then f, f',...f**) are continuous in (a — &;a + 6).

1.6.3. Remark. It is very simple to derive formula (1.6.2.) from a) - ¢). Indeed,
deriving the two sides of identity (see (I.4.4)

Fz, f(2)) =

- we get

e f(@) + S e, @) £1(2) =0, (1:63)

(The left hand side is derived by means of the Chain rule for composite functions of
several variables.) If we calculate f'(z) from this relation we get (1.6.2). Taking into
account a) in Theorem 1.6.2 we get

ge(4).
_ Oz
f( )- %%(A)
Deriving (1.6.3) we get
2?:: ff( )_{_ a : (fl( ))2 ”{ )=O. (1.6.47)
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From this relation we can express f"(z).
We can calculate higher order derivatives of an fmplicit function in a similar way.

The next theorem states sufficient conditions which ensure that the relation
F(z,y,z) = 0 defines an implicit function. :

1.6.4. Theorem. Let F be a function of three variables which are denoted z,y, .
We suppose that F and partial derifatives %{-, %, % are contx'nuogs in some neigh-
bourhood U(A) of point A = [a,b,c]. We assume that F(A) = 0 and 2E(A) # 0.
Then there are § > 0,¢ > 0 such that the unique function f is defined in a way that
satisfies the following properties:

a) ¢= f(a,b) L
b) V[z,y] € (a—8;a+8) x (b—4; b+4) : F(2,y) € (c—&; c+¢) and F(z,y, f(z,y)) = 0.
e} ik, %f, ‘,?5 are continuous.in (a — §;a + &) x (b—§;b 4 §)

d) V[z,yl € (a—&;a+8) x (b—&;b+4)

6f ‘;F(E,y,f(é,y)) Bf aa (z1y|f($|y))
(z,y) == y  ope (T y) = —e—— 2
oz v) -—-gf(z.y. f=z.y)) Oy (=) —‘;f(x.y,f(z,y)) F8)

Moreover, if all partial derivatives of F' are continuous in a neighbourhood U(A)
up to the k-th order, then all partial derivatives of f are continuous in (a — §;a +
8) x (b— &b+ 9).

1.6.5. Example. Prove that the equation F(x,y,2) = 2° —zy + yz + yP -2 =
0 in some neighbourhood of the point A = [1,1,1] defines function f such that
F(z.y, f(z,y)) = 0 in some neighbourhood of point [1,1], and calculate the partial
derivatives at this point. 2

Solution: We use the previous theorem. Function F(z,y,z) = 2* —zy + yz + y* — 2
is polynomial, so it is defined and continuous in E; and all (first order) partial
derivatives are also defined and continuous in E;. Substituting 4 into the equation
we get F(1,1,1) = 0. For the partial derivatives we get the following expressions:

oF oF oF
or - el - 2 _
Jz (Iﬁyvz}_ Y, 6y($;yaz)— z+z+ 3y°, —az(:t,y,z)—322+y

Substituting the point 4 = [1,1,1] into these expressions we get:

oF
E(z.y.z) =440

aF aF
B—(I-.%Z) = -1, —(z.y.2)| =3,
i A A A

dy

Thus, all conditions of the theorem are satisfied. The unique function fz,y) defined .
and continuous in some neighbourhood of [1,1] exists, such that f(1, 1)=1,

F(z.y, f(z,¥)) = 0 in some neighbourhood of [1, 1]. Function f has continuous partial
derivatives in some neighbourhood of [1, 1]. Using the formulas from d) of the theorem
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for partial derivatives, substituting [z,y] = [1, 1], taking into account f(1,1) =1, we
get:

8 1y BLLALID o ERLY L) 3
97 T UELLALY)  F LY 3P 4yl 4
g(l - _ $0,1,50,1) =_%§Z(1, L1) _ —(-z+2+3") = g
& T EMLLALY)  S(LLY) e

1.7. Local extremes.

1.7.1. Remark. In order to distinguish between extremes of function f on a set and
local extremes, an extreme of f on a set is often called a global eztreme of f on a set
or an absolute extreme of f on a set. A maximum on a set is therefore called a
global mazimum of f on a set or an absolute mazimum of f on a set. Analogously,
we can define a global minimum of f on a set or an absolute minimum of f on a set.

1.7.2. Local maxima and local minima. We suppose that f is a function of n
variables z1, 23, ..., 2, defined in some subset D of E, and A is an interior point of
D.

If there exists a reduced neighbourhood R(A) C D such that VX : X € R(A) =
f(A) > f(X), then we say that function f has a local mazimum at point A. More-
over, if there exists a reduced neighbourhood R(A) C D such that VX : X € R(4) =
f(A) > f(X), then we say that function f has a strict local mazimum at point A.

A local minimum at a point and a strict local minimum is defined by analogy.
If there exists a reduced neighbourhood R(A) C D such that VX : X € R(4A) =
f(A) < f(X), then we say that function f has a local minimum at point A. More-
over, if there exists a reduced neighbourhood R(A) C D such that VX : X € R(4) =
f(A) < f(X), then we say that function f has a strict local minimum at point A.

Local maxima and local minima are called local eztremes. It is assumed in these
definitions that point A4 is an interior point of function f. These definitions can be
extended in some sense to other cases.

1.7.3. Local maxima and local minima with respect to a set. We sup-
pose that f is a function of n variables z,z3,....z, defined in some subset D of
E, and point A € D. If there exists a reduced neighbourhood R(A) such that
VX : X € RA)nD = f(A) > f(X), then we say that function f has a
local mazimum with respect to set D at point A.

Moreover, if there exists a reduced neighbourhood R(A4) such that VX : X €
R(A)ND = f(A) > f(X), then we say that function f has a strict local mazimum
with respect to set D at point A.

By analogy, we can define a local minimum with respect to a set at a point, and
a strict local minimum with respect to a set at a point.
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1.7.4. Theorem. Necessary condition of local extremes of differentiable
functions. If function f is differentiable at point A € E,, and f has a local extreme
at point A then

(grad f)(4) =

1.7.5. Critical points. An interior point A of the domain of a funct:on f
where

(grad f)(4) = O

or where at least one partial derivative at point A does not exist is a so called critical
point of f.

An interior point A of a set G which is contained in the domain of a function f where

(grad f)(4) =

or where at least one partial derivative at pc_xil“lt“.:‘iﬂ':ckloes not exist is called a critical

_qoint of f on set G.

1.7.6. Remark. Theorem I.7.4 implies that the only points where a function f can
ever have a global extreme on a set G are critical the points of function f on set G
or the boundary points of set G.

1.7.7. Theorem. Sufficient condition of local extremes of differentiable
functions of two variables. Let f be 4 ‘function of two variables, and let f be
differentiable at point A and (gra.df)(A) ‘0. We assume that there exist all partial
derivatives of the second order inn'a ne.!ghbou.rhood U(A) which are continuous at
point A. Denoting

L, "I )
Aa(4) = Sf’ %20 | )= Lo,
e (4. SE)

we have:

a) If Ay(A) > 0 and A,(A) > 0 then function f has a strict local minimum at
point A.

b) If Ag(4) > 0 and A (4) < 0 then function f has a strict local maximum at
point A.

c) If Ay (A) < 0 then function f has no IocaJ extreme at point A.

1.7.8. Theorem. Sufficient condition of local extremes of differentiable
functions of n variables. Let f be a function of n variables, and let f be differen-
tiable at point A and (grad f)(A) = ©O. We assume that there exist all partial
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derivatives of the second order in a neighbourhood U(A) which are continuous at
point A. We use the following notation:

&*f
'aT%(A)'I ax a:: ( )) "y azizaxt(A)
*f &f
B e A
Ax(A) = Bzaaxl(‘é)’ f"?iF ) : Brzam( , fork=1,2,..,n

i A & f
szaa:l‘ ! 6::;,8:5

@A), %(A)

s cacpaby s

Assum.mgA;‘(A) #0 fork—l 2,...,n we have:

a) If Ag(A) > 0 for k = 1,2,...,n then function f has a strict local minimum at
point A. :

b) If (—1)*Ag(A) > 0 for k = 1 2,...,n then function f has a strict local maximum
at point A. .

¢) In other cases function f has no local extreme at point A.

1.7.9. Example. Find all local extremes offuuctmn f f(z %Y, z) = g’ +3z +3y -
zz — zY.

Solution: Function f is defined in Es We find all critical pomts of f. We ca.lculate
the partial derlva.tlves

IR

of _ of ER of -6z —
E(x,y.Z)—Zz-—y—z, ay(z,y,Z)—ii A I ™ (z,y,Z)—Gz‘ z

The partial derivatives are deﬁ.ned and continuous in Ej. Using the Decessary condi-
tion of a local extreme, we solve the system (grad f)(X ) 0 ie.

2z — y — z =0
3 - =z = 0
6z — z =0

From the second equation we get =z = 3, substituting ﬂﬁé value into the third
equation we get z = 3 and, finally, the first equatmn 1mphes y = 3. Thus, the
unique critical point of f is the. pomt A=[341,1]
Now we will use the sufficient. condition of the existence of .an extreme. We
calculate all partial derivatives of the second order:
&f *f _f _
@(x,y;z) = 2: ayax(z’yiz) . azax(xay:z) = _13

2 62 .
?;y_{'(xvy:z) =) aaz_afy'(zay)z) = 0) #(z’y,z) =6
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=7...11 Di=—1, Ap=2] = 2.

0
6

The condition in a) of the previous theorem is not satisfied, and the condition
in b) is also not satisfied. Using ¢) we can conclude that the function f has no local
extreme in E;. From this it also follows that the function f has no (global) extreme
on E,.

In the next example we pay attention to a procedure for ﬁndlng globa.l extremes
of a function on a set.

. )
1.7.10. Example. Find the global extremes of function f : f(z,y) = % + zy? — dzy

2
on the set G = {[w,y] eE; :y> % Ay < 3;1:}. (Draw the sketch of G.)

Solution: function f is a function defined and continuous in E;, and set G is a
bounded closed subset of Eg, so the (globa.l) extremes of f on G exist, see Theorem
1.3.18.

A function can have globa.l extremes at critical points or aft bounda.ry points
only, see Remark I.7.6.

A) Firstly, we find all critical points - interior points of G where (grad f)(X) = O or
where the function is not differentiable. We calculate the partial derivatives:

%(x,y) =2l +y’ —dy=2+y(y-4), gy—f(wsy) = 2zy — 4z = 2z(y — 2)

Partial aerivativesra.re defined and continuous in E;, so f is differentiable. Uéing the
necessary condition of a local extreme we solve the system (grad f)(X) = O, i.e.

2 +yly-4) = 0
2e(y—2) =0

From the second equation we get t =0V y = 2.
a) Let ¢ = 0; then from the first equation we get y =0V y =4.
3) Let y = 2; then from the first equation we get z = -2V z = 2.
Thus, we get the points: [0,0],[0,4],[2, —2],[2,2]. However, only point [2,2] is

an interior point of G, ([0,4],(2,-2] ¢ G, [0,0] € 8G). We denote 4o = [2,2],

16 &
f(Ag) = -3 =-5.3.
B) Now we will investigate the boundary of G. The boundary of G can be divided
into two parts:

= {[z,y] EEy i y= 3 ,.L € 0 9]} Ty ={z,y] € Ey : y=3x,x € [0;9]}
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Part I'y: The function value of f on I'y depends only on one variable:

_ 2 £ 2t 22 b
F1(a:) =f(.’b‘,?)— ?+IE-4$—" ——9—-—1:

Part I'y: The function value of f on I'; also depends only on one variable:
Fy(z) = f(z,32) = —-§-z —-124°

Ba) We will investigate these functions on the open interval z € (0;9), (and we will
evaluate the function values at z = 0 and = = 9 in part Bb)). We get the critical
points of F; from the relation:

5 ,
Fi(z) = §:c -3z =0
Thus, z = 0., ";—7, - % However, only the pbint T = 25—7 is an interior point

of the interval [0;9]. After evaluation of the y-coordinate (y = ’Tz = 2) we denote
Ay =[{/%,2]. We can compute the function value of f at 4; : f(4;) = F,(\/"Z,,E)_é

515
= — 5.019389.
Part I‘g:
Fi(z) =282 - 24z = 0 = z= 0,‘?.
The interior point of [0; 9] is z = £. After evaluation of the y-coordinate (y = 3z = 18)

we denote A; = [£, 18]. We can compute the function value of f at Az : f(42) =
Fz( )= —2.938775.
Bb) Now we evaluate the function values f(0,0) = F1(0) = F;(0), and £(9,27) =
Fl(g) = Fz(g) 2
2=0 = y=%=3m=0 = A;=1[0,0], f(As)=0
2

2=9 3 y=-—=82=27 = A, =[9,27), f(As)=5832.

If we compare the function values of f at points Ag, A;, ..., A4 we get: function
f has the global minimum on G at the point Ay = [2,2] and the global maximum
on G at the point A4 = [9,27]. (Point A, is an interior point of G, point A is a
boundary point of G.)

11.8. Exercises.

1. Find the function’s domain and range.

f(z,y) = o=V flz,y) = ﬁ f(a,y) =In(e* +2° +47)
flaz,y)=W—= fz,y) =y —a? f(z,y) = cos(3z? — 2y + 3)
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f(z,y,2) Fyzlnz

f@ys) =VE TP+ 1

1
= z,y,z) = arctan(z +y + 2)
f(fl' y,z)—$,+yg+zz f( 2 Ys ) (
2. Do the following limits exist? If yes, evaluate them.
2 _y? . z* . e¥sinz
= 322 —y" +5 im  ——p m
sl z? +y? +2 (e.31=0,0] 24 + y [=.¥1=+10, z
z+y—4 . z4+y
Ho = o - 2 = vlll-?llﬂ ol —
[z,v]=[0,0] t:tyi [e.u)=+2,2] /T + y_ , ' y
c-y+2/z -2y I y+4
m 2. -4 22y — zy +4a? — 4z
[=,3]+[0,0] NNl ) [.,.;]4 y—zy

3. At what points [z,y] in the plane are the functions continuous?

2 4 + 1 ) 1
flz,y) = +§ f(z,y) = ___..__;I:_ = fen) =gy
f(z,y) =l > f(z,y) = cos(z® + zy) flz,y) = et
z

4. At what points [z,y, 2] in space are the functions continuous?

faws) =gy fE@ws) =l f(z,y,2) = ¢*sinz +)

1 1
z+Yy ooy s e i
flz,y,2) = ;—y f(z,y,z) -]na:yz f(a:,y,z) Tyl + 2]
1 i y+4
f(x,y,?)=flj—xgﬁ——m f(z,y,z)—zzy_xy+4zz,_4x

5. Find 8 and 5L

f(z,y) =2 —Tay + 137 f(z,9) =(+2*(w+3) flz.y) = m’(2&! -5)

f(z,y) = zsin(zy) f(z,y) = In(z%y) f@9) = Ty
fay) = 2L fay) =l -2%)  f@y)= ~/z= T
z—y Bikh i
f(a,y) = ¢ lay 129) = sy f(z9) = e
6. Find 33(- -g-f and g't
.f(xny:z) f(z,y,z)=n:-—vy2+zz f(x,y,z)=a.rctan(z+y+z)
1
f(z,y,2) =2y +yz + 2z flz,y,2) = Vi + 2+ 22 f(z,y,2) = m

2 ex+]ny2

.f("cay! )"5 sin yw:;z f(mvyaz)=_'ﬁ f('tsylz)= \/E
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7. Find the second order partial derivatives of the following functions.
f(z,y) = 2"y + cosy + ysinz f(z,y) = ze¥ +y +2°* — 13
fle,y) = 4 zlny+ylnz +3 flz,y) =y+ 2’y + 4’z —In(y® +2)

f(z,y) = y* + y(sinz — *). f(z,y) = 2 + By + sin(zy) + :cue"li:1

. 8. Evaluate grad f at point M and directional derivative %é(M ).

f(z,y) =o* + 22y — 3y, M =[1,1], §=(3,4)

flz.g2) =2 + 2% - 32° - 17, =[1,1,1], F=(1,1,1)

flz,y,2) = cos(zy) +€** +1n(22), M =[1,0,0.5], §=(1,2,2)

9. Show that the followmg equations F(z,y,z) = 0 define implicit functions f :
z = f(z,y) in the nea%hbourhoods of the given points M = [M;, M3, M;), and find
its partial derivatives £, -55 at [My, M3).

F(z,y,2) =2 —zy+yz+y* -2=0, M =1,1,1]
F(z,y,é)=zz—2y2+z'2—4x+22—-5={l, M=[—1, g—,l:' |

F(z,y,2) =22 — 2’y + 2+ 2z —y =0, M=10,1,1]
F(z,y,2) =sin(z + y) +sin(y + 2) +sin(z + 2) =0, M =[x, 7]

10. Find the equations for the tangent planes and norma.l lines at points M on given
surfaces F(z,y,2z) =0. -

F(z,y,2)=2*+y* +22 -3 =0, Mﬁ—f[l,l,l]
F(z,y,z) = cos(mrz) — x y+e""+yz—4 0 M =[0,1,2]

11. Find all the local maxima and local minima of the following functions.
flz,y) = 20y 52 ~ 2" + 4z +4y -4 f(z,y) =2’ +oy+3c+2+5
fley) =5ey—Te* +3c-6y+2  flz,y) =2* —dzy +4? +6y+2
flz,y) =22 +3zy + 4" ~5s +2y  flz,y) =2’ ~y* 20 +4y+6
flz,y) = 82" +y* + 62y

f(m,y)=x’+y3+3w’—3y’—8' flz,y) =22° + 24 — 92" + 3y* — 12
flzy) =day—z* —y*—11 flz,y) =a* +y* +day +7

3
f@,y) =92 +3% — day

12. - Find all the global maxima and global minima of the functions on the given
subsets.

f(z,y) =22" -4z +4° ~dgED
f(z,y) =< —xy+y +7, S
flz,y) =2 +zy+y* — 6242,
f(z,y) =* + 2y +y* — 62,

f(z,y) = 48zy — 322° — 24¢°,

f(z,y) =2 _yzr

G={[z,y] : 220,y<2,y>2q}
G={lz,y) : 220,y<4,y >}
G={lz,y] : 0<2<5-3<y<3}
G={lr,y) : 0<z <5 -3<y <0}
G={le,y] : 0<2<1,0<y<1}
G={lzyl 22 -1, y2-1, a+2y < 2}
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II. Riemann Integral of a Function
of One Variable ’

I1.1. Motivation and definition of the Riemann integral.

II.1.1. Physical motivation. 1. Suppose that we have a spring or a thin rod
of a finite length which need not be homogeneous. This can be caused e.g. by a
varying cross-section of the rod or by varying density of the material that the rod is
made of. We can assume that the rod covers the interval (a,b) on the z—axis and its
longitudinal density (i.e. amount of mass per unit of length) is a function y = p(z).
We wish to evaluate the mass M of the rod.

If function p is constant then the problem is very easy — we can simply put M
equal to the product of the constant longitudinal density p and the length of the
interval {a,b), i.e. M = p-(b—a).

If p is not constant then we can divide the rod (i.e. the interval (a,b)) into many
shorter parts (the subintervals (zo,z1}, (21,22}, (22,23), ..., {zn-1,2,) where
9 = a and z, = b) and we can approximate function p by a constant on each of
the subintervals. A reasonable value of this constant is p(¢;) for some ¢; € (z;—1,z;)
({=1,2,...,n). Then the approximate masses of the the shorter parts of the rod are

p(G1) - Azy,  p(G)- Azz, ..., p(Ca)- Az

where Az, = 21 — &0, Az = 23 — 21, ..., Az, = 2, — z,—1. The approximate mass

of the whole rod is
n

Z p(Gi) - Az,

=1 :
' We can naturally expect that this sum will approach the exact value of the total mass
M of the rod if n — 400 and the numbers Az; (i = 1,2,...,n) tend to zero.

2. Suppose that a car moves in a time interval (a,b) and its velocity is given by the
function y = v(t). We wish to compute the distance d the car travels in the time
interval (a;b).

If the velocity v is constant then the distance is obviously d = v - (b — a).

If the velocity is varying then we can divide the time interval {a.$) into many
shorter subintervals (tg,%1), (#1,2), ..., (ti—1,%;) (Where to = a and t, = b) and we
can approximate the velocity by a constant on each of these shorter subintervals. A
natural value of this constant is v((;) for some (; € (t;—1,¢;) (i = 1,2.... ,n). The
approximate distances moved in the time intervals {to,1), (t1,%2), ..., (fn—1,tn)
are :

U(C]}'Atla U(C2)'A12; tee oy v((n)'Atn

where Aty =t —to, Aty =ty —y, ..., Aty = t, — tn—;. The approximate distance
travelled in the whole time interval (a,b) is
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3" u(¢) - A

i=1
One can expect that this sum will approach the real distance that the car travels in
the time interval (a,b) if n — 400 and the numbers At; (i = 1,2,...,n) tend to
zero.

I1.1.2. Geometric motivation. Suppose that f is a nonnegative and bounded
function on an interval (a,b) and D is the region between its graph and the z-axis.
(See Fig1l.) An important question is how to define and evaluate the area of D.

If f is a constant function on (a,b) then D is a rectangle and its area is equal
to the product f- (b — a).

If function f is not constant then we can again subdivide the interval (a,b)
into many short subintervals {zq,21}), (21,22), ..., (Zn—1,2n) (With ¢ = a and
zn = b) and we can approximate f by a constant on each of these subintervals. A
possible value of this constant is f((;) for some {; € (zi—1,2;} (i = 1,2,...,n). Thus,
we can approximate the area of the region below the graph of f on the subinterval
(Zi-1,7;) by the area of the rectangle with the sides f((;) and Az; (= z; — zi-1).
The approximate value of the area of the whole region D is equal to the total area
of all the rectangles:

Z f(G) - Az;.
i=1

(See Fig. 1.) We can now define the area of D as a limit of this sum for n — 400 and
the lengths Az; of the subintervals (z;_,z;) (i.=1,2,...,n) tending to zero.

i
. E ! E 5 .
f«ri frlfz 5 K : . f,.;‘ E —
= + - e
A Xy X Xy Ly Kot Kb

Fig. 1

One can observe that all the situations described in paragraphs I1.1.1 and I1.1.2
lead to the limit of a certain sum and the sum is the same in all the considered
situations. We explain in the next paragraphs what we exactly understand under the
limit of this sum, what we call it, how we denote it and how we can evaluate it.
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11.1.3. Partition of an interval. Let {a,b) bea boungied closed interval. A sygtt?m
of points g, T1, ... , Tn such that a =19 <21 <... <ZTp = b is called a partition
of the interval (a,b). If this partition is named P then we write

ey a=I0<I]<.-.<£n_1<In=b. (Hl)

The norm of partition P is the number ||P|| = max=1,...,n (z: — zi—1). (Thus, |[P||

is the length of the largest of the subintervals (29,21 ), (21,22}, ..., (Zn—1,%n) and ,

it informs us how “fine” partition P is.)

IL.1.4. Riemann sums and their limit. Let y = f(z) be a bounded function on
the interval (a,b) and let P be the partition of (a, b) given by (IL.1). Denote by Az;
the length of the i-th subinterval (zi-1,2i) (e Azi =zi—Ti ). Let V })e a system
of points (1 € (zo,1), (2 € (21,22}, --» Cn € {Za-1,%n}. Then the R:emann‘.mm
of function f on the interval (a,b) corresponding to partition P and system V is

s(FLRV) = f(¢) Az,
C=1 Loy ey
 We say that number S is the limit of the Riemann sums s(f, P, V)as | Pl — 0+
if to every given € > 0 there exists § > 0 such that for every partition P of (a,b) and
for every choice of V, ||P|| < & implies |s(f, P,V) — §| < e. We write: '

i PV)=S5. L2
leﬁgw s(f,P,V) (11.2)

I1.1.5. Riemann integral. If the limit in (IL.2) exists then function f is called
integrable in the interval (a,b) and S is called the Riemann integral of function f on
{a,b). The integral is usually denoted as

[f(a:)dz or f:fdm.

The numbers a and b in this integral are called the limits of integration, a being
the lower limit and b being the upper limit. The integrated function is called the
integrand. .

The Riemann integral is also often called the definite integral.

I1.1.6. The area of the region between the graph of a function and the
z—axis. It follows from paragraph I1.1.2 and the definition of the Riemann integral
that if f is a nonnegative and integrable function on the interval (a, b) then the area
of the region between the graph of f and the z-axis can be defined as the value of
the integral f: f dz.

By analogy, if function f is nonpositive and integrable on the interval (a,b) then
the area of the region bounded by the z—axis (from above) and the graph of f (from

below) can be defined as — f: fdz.

In a general case, when f has both negative and positive values in the interval -

{a,b), the integral f: 'f 'dz expresses the sum of the areas of all the parts of the
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region between the graph of f and the z-axis, but the contributions of the parts
below’ the ‘z—axis are taken negatively. :

You will see in Chapter III that the area of more general sets than the regions
below or above the graph of a function y = f(z) can be defined by means of a so
called two—dimensional measure my and evaluated by means of a double integral.

I1.1.7. Extension of the definition of the Riemann integral. If function f is
integrable in the interval {a,b) then we put a b
_ ffdx:-f f dz.
b a

Specially, we also put f fdz =0.
a

II.1.8. The mean value of function f on an interval. Let function f be
integrable in the interval (a,b). The number

1 b

is called the mean value (or the average value) of function f on the interval {a,b).

The mean value has the following geometric interpretation: Suppose for simpli-
city that function f is nonnegative on the interval (a,b). Then the mean value p is
such a number that the region between the graph of f and the z—axis has the same
area as the rectangle with the sides b — a and y. It is clear that .-

2 flz) < p < zesz‘;?b)f(x)- o (IL.3)

IL.2. Integrability (existence of the Riemann integral) — sufficient
conditions. . T

The two statements “the Riemann integral | : f(z) dz exists” and “function
f is integrable in the interval (a,b)” say exactly thé same.

Most of the functions you will use in various applications will be integrable.
Nevertheless, you should be aware that there also exist “bad” functions such that the
limit of the Riemann sums (II.2) does not exist. Thus, the Riemann integral of these
functions also does not exist. These functions are called non-iniegrable. The next
theorem and Remark I1.2.2 give sufficient conditions for the integrability of function
f (i.e. for the existence of the Riemann integral of f).

11.2.1. Existence theorem for the Riemann Integral. Let function f be con-
tinuous on the interval (a,b). Then f is integrable in (a, b).
11.2.2. Remark. Th.is theorem can l.ae.genera.lized:

Let function f be bounded and piecewise-continuous on the interval {a;b): Then it
is integrable in (a, b). . g i
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(A function f is said to be piecewise-continuous in the interval (a,b) if (a,b) can be
divided into a finite number of subintervals such that _f is continuous in the interior
of each of them.)

11.3. Important properties of the Riemann integral.

11.3.1. Theorem. (The domination inequality for the Riemann integral.)
If functions f and g are both integrable in the interval {a,b) and ¢(z) < f(z) for

all z € (a,b) then
b b
/ gdz < ] f dz.
B a a b
Specially, if f(z) >0 for all z € (a,b) then f fdz>0.

11.3.2. Theorem. (Boundedness of the Riemann integral.) If function f is
integrable in the interval (a,b) and m < f(z) < M for all z € (a,b) then

]
m-(b—a) < / f(z)dz < M -(b—a).

Both theorems I1.3.1 and II.3.2 easily follow from the definition of the Riemann
integral. Theorem I1.3.1 tells us that if function f dominates function g on (a,b)
and the functions f and g are both integrable in (a,b) then also the integral of f
dominates the integral of g on (a,b). The inequality in IL.3.2 shows that the value of
the Riemann integral can be estimated by means of the lower bound and the upper
bound of function f.

" I1.3.3. Theorem. (Linearity of the Riemann integral.) If functions f and g
are integrable in (a,b) and a € R then

j;b(f+g)dz=[fdz+f:gdx and .[“'fdx:a'fabfdx-

(This property is already known from the theory of the indefinite integral.)

II.3.4. Theorem. (Additivity of the Riemann integral with respect to the
interval.) If the integrals [ f dz and f: f dz exist then

/;cfdx+/:fda:='[‘bfdx.

11.3.5. Theorem. a) If function f is integrable in the interval (a,b) and if
(¢,d) C (a,b) then f is also integrable in (c,d).

b) If functions f and g are both integrable in the interval (a,b) then the product
f+g is also integrable in (a, b).
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¢) If function f is integrable in the interval (a,b) and function g differs from f in
at most a finite number of points then function g is also integrable in (a,b) and

[_.;d.-::[fdm.

Item a) 1s an immediate consequence of the definition of the Riemann integral.

Item b) is a statement about the integrability of a function which is the product
of two other functions. However, bear in mind that the fact that “the integrability of
f and g implies the mtegra.b:hty of f-g¢” does not mean that

[ fogde= ([} fda)- () g da)!

Item c) tells us that the change of function values of f in at most a finite
number of points does not affect the existence or the value of the integral f: f dz.

In other words: The existence and the value of the integral | : f dz do not depend
on function values of f in a finite number of points. Thus, function f need not even

be defined in a finite number of points of the interval (a,b) and this has no influence
on the existence and the value of f: f dz. Specially, it plays no role whether the
integral f: f dz is considered on a closed or on an open interval!

11.3.6. Theorem. (The Riemann integral as a function of its upper limit.)
Suppose that function f is integrable in the interval (a,b). Then

a) the function F(z) = [7 f(t) dt is continuous in (a,}),
b) the equality ‘
d [* .
= | fa =@ (1L4)
holds in all points z € (a,b) in which f is continuous.

Function G(z) = _f: f(t) dz (with the variable lower limit) is also continuous
in (a,b). However, it satisfies the equality in b) with the change of the sign:

b
i f f(t) dt = —f(z). (IL5)

(This is a consequence of the equation G(z) = f f(t) dt — F(z).)

Equalities (IL4) and (II.5) can also be modified for the boundary points of the
interval (a,b) so that if function f is right—continuous at point a (respectively left—
continuous at point b) then F(a) = f(a) (respectively F'(b) = f(b)).

The validity of statement a) follows (at least intuitively) from the geometric
interpretation of the Riemann integral (see paragraphs I1.1.2 and II.1.6). Formula
(I1.4) can be proved in this way:

_ z z+h z
F'(E) = ,‘l'iﬂ E.(:’;-F-—"z.i). = P_E(l] % [l f(t) dt—j; f(t) d‘t] =
T z+h
= pm g [ AOd = Jm uh
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where p(h) is the mean value of function f on the interval with the end points z and
z + h. The continuity of f at point z and (I1.3) imply that u(h) — f(z) if h — 0.
This proves (IL.4).

I1.3.7. Remark. It follows from Theorem IL.3.6 that if function f is continuous in
interval J and ¢ € J then the function F(z) = ST f(t) dt is an antiderivative to
function f in J.

1L.3.8. Remark. Formula (IL.4) can be generalized. If function f is continuous in
interval I and a(z), b(x) are differentiable functions of variable z in interval J with

their values in I then

(z)
[ 10 de = 16 ¥ o) Flele) -2

forz € J.

11.4. Evaluation of the Riemann integral.

We come to one of the fundamental topics of this chapter — to the question how to
evaluate the integral f: f dz. Due to its importance, the next theorem is called the

Fundamental Theorem of Integral Calculus:

IL4.1. Theorem. If function f is continuous in the interval (a,b) and F is an
antiderivative to f in (a,b) then

j b fdz = F(b)— F(a). (IL6)

The formula (IL6) is called the Newton-Leibnitz formula. The difference F(b)—
F(a) is often written in a shorter form: F(b) — F(a) = [F]

The proof of the Fundamental Theorem of Integral Calculus is easy: The function
G(z) = [ f(t) dt is also an antiderivative to f in (a,b). Thus, there exists a constant
¢ such that F = G + ¢ on (a,b). This means that F(a) = G(a) +¢=c (because
G(a) = 0) and F(b) = G(b) + ¢ = G(b) + F(a). This yields: f: ft) dt = G(b) =

- F(b) — F(a).

The Newton-Leibnitz formula connects the indefinite and the definite integral:
When you know the indefinite integral of f on the interval (a,b) then you also know
all antiderivatives to f on {(a,b). You can choose any of them and use it in the
Newton-Leibnitz formula to obtain the value of the definite integral of f on {a,b).
The fact that the indefinite integral and the antiderivative are so important in the
calculation of the definite integral was one of the main reasons why you have learned
to compute indefinite integrals.

You already know that all antiderivatives to function f on the interval (a,b)
differ at most in an additive constant. Thus, if you choose e.g. an antiderivative
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g |
=

F + k (where k is a constant) instead of F' and you use it in the Newton-Leibnitz
formula, you get

b
[ 1de = F4RE = (FO+H) - (F@+H) = FO) - Fa).

The result is the same as in formula (I1.6). Hence you can see that it is not important
which one of the infinitely many antiderivatives to f on (a,b) you use.

11.4.2. Example. / sin zdz = [~ cos z]T = (—cos 7) — (—cos 0) = 2.
0

The next two theorems show that the method of integration by parts and the
method of substitution, known from the theory of indefinite integral, can also be
directly applied to the Riemann integral.

I1.4.3. Theorem. (Integration by parts for the Riemann integral.) Let the
functions u and v have continuous derivatives in the interval (a,b). Then

b | I
ju'-vdx = [u-v]} —/ u- v dz. (IL7)
a a

wey - T SRR
I1.4.4. Example. f e .zdr=") [Le¥* :r.]z = / le¥de =
o 0 Jo

i

i

14__10.__1_%2_43;4'10 3 4
=1let2- 10— [1e¥] =t —fe' + i’ =Fe +

*) We have put u'(z) = €%, u(z) = } €**, v(z) = z and u'(x)=1 _
IL.4.5. Theorem. (Integration by substitution for the Riemann integral.)

Let function g have a continuous derivative in the interval (a,b) and let g map (a,b)
into interval J. Let function f be continuous in J. Then IR R

. f bf(s:(av))-g"(aﬂ) dz - ] " f(s)ds. (IL.8)
: :.E a . 9(a) i .

Formula (II.8) can be used in two situations: you wish to evaluate the integral
on the left hand side and you transform it to the integral on the right hand side (if
the integral on the right hand side is simpler) OR. vice versa.

w2
I1.4.6. Example. Let us evaluate f " sin’ - cos z dz.
) T
If we put (a,b) = (0,7/2), s = g(z) = sin z, f(s) = s?, J = (—00,+00), We can see
that all the assumptions of Theorem I1.4.5 are satisfied. Moreover, ¢(0) =sin0=10
and g(m/2) = sin(x/2) = 1. Applying formula (IL.8), we obtain:
w2 1
[ stz con 2 e = j Pdom ] m L.
0 0
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2
11.4.7. Example. Let us evaluate / Vd—ztdz.’
0

We can take this integral for the integral on the right hand side of (II.8) (with the
variable denoted by z instead of s). The function f(z) = /4 —z? is continuous on
{0,2) and so the integral exists. Put z = g(t) = 2 sin t, dz = ¢'(t)dt = 2 cos ¢ dt.
We have g(a) = 2 sin a = 0 and g(b) = 2 sin b = 2. Thus, we can choose a = 0.and
b = /2. Then all the assumptions of Theorem II.4.5 are satisfied and we obtain:

2 w/2 /2
f 4 —z2dr = v4—4sin2t~2costdt=/ 4 cos’tdt =
0 0 0

/2
= / 2(1+cos 2t) dt = [2t+sin2t])]/2 = 7
0

I1.4.8. Remark. Suppose that you have to evaluate a Riemann integral on the
interval (a,b) and you wish to use integration by parts or a substitution. Then you
have two possibilities: )

1) You can use Theorem IL4.3 or Theorem I.4.5. You transform the integral to
other (simpler) integrals and you deal with the upper and the lower limits of all
the integrals during the computation. This approach is explained in examples
11.4.5, I1.4.6 and I1.4.7.

2) You can first compute the integral as an indefinite integral on the interval (a, b)

and then you apply the Newton-Leibnitz formula (I1.6) on (a,b).
To show what we exactly mean by this, let us compute the integral from example
11.4.6 once again, this time by the method we are just explaining. Thus, let us
start with the indefinite integral [ sin®z cos z dz. We can use the substitution
s=sin . Then ds=cosz dr and

/sin‘zz-coszdz = fszds =1l +e=tsin’z+e

/2 i
Formula (II.6) now gives: / sin® z cos « dz = [} sin® .‘t]:lz =}
0
As you will observe after having solved a larger number of examples, approach
1), based on direct application of integration by parts or integration by substitution
to definite integrals, is usually technically simpler and less laborious.

II1.5. Numerical integration.

You will remember from the theory of the indefinite integral that an antiderivati-
ve to a given function f often exists, but it cannot be obtained by standard methods of
integration and it cannot be expressed in a “closed form” (i.e. by a formula prescribing
a finite number of operations). Analogously, it often happens that the the Riemann
integral f: f dz exists, but it cannot be evaluated by a standard integration based
on the Newton-Leibnitz formula. However, there exist approximate methods (also
called numerical methods) which enable us to evaluate the integral approximately,
with an error as small as we wish. We shall explain two such methods in this section.
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Both these methods usually require the performance of a higher number of arithme-
tic operations in order to reach a higher accuracy (i.e. a smaller error). Therefore
approximate methods are usually used on computers.

Both the methods are based on the partition
P: a=z< 11 <29... <ZTp-1<Tp="b (11.9)

of the interval (a,b) to n subintervals (zx—1,2k) (k =1,2,...,n) of equal length A.
Thus,
b—a
h= - and zr=a+k-h (k=12,...,n).

We shall denote yx = f(zi).

11.5.1. The trapezoidal method. Suppose that we approximate function f by a
linear function on each of the subintervals (zx—1,2x). A linear function is uniquely
determined by the requirefnent that its graph (a straight line) passes through two
chosen points. Let these points be [zx—1,yx—~1] and [z, yx]. Then the linear function
has the equation y = yx—1 + (y& — ye—1)/h - (z — zk—1). We can easily integrate it
on the interval (zg—;,zx ) and we obtain Iy = k- (yr-1 + ¥ )/2. It is the area of the
trapezoid (see Fig.2). When we sum all the numbers Iy, I, ..., I, we get

h
T, = E-[y0+2y1 +2y2 4+ 21 +¥n - (1L.10)

Fig. 2

T, is an approximate value of the Riemann integral |, : f dz. The geometric sense of
T, is seen on Fig.2 — it is the sum of the areas of n trapezoids constructed on the
intervals (zo,z1), (21,22} ..., (Tn-1,Zn).

As to the accuracy of the approximation, it generally holds that the finer the
partition of (a,b), the better are the results. In other words, the accuracy of the
approximation increases with increasing n (i.e. decreasing k). It can be proved that
if f" is continuous on (a,b) and M is an upper bound for the values of [f"| on (a,b)
then the following error estimate holds:
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<Pty (IL11)

- 12

b
ﬂ—ffﬁ

I1.5.2. Simpson’s method. Suppose now that n is an even nun.lber. We can app-
roximate function f by a quadratic function on each of t:.he subintervals (zo,z2),
(2,Z4)s -+ » (Tn-2,Zn). A quadratic fu{txction on a fsubmterval (zp—z,z) (B =
2,4,...,n) is uniquely defined by the requirement that its graph (a parabola) passes
through three chosen points — let it be the points [2k—2,Yk—2], [zf_l,yk_l.], [z, yi]-
The integral of this quadratic function on (zg—2 , %k ) can be relatively ea.s_lly evalua-
ted — you can check that it is Ir = h- (ye-2 + 4ye—1 + yk)/3. Summing all the
numbers Iz, Iy, ... , In, we obtain

S, = g . [yn + 4y + 22 + 4ys + ...+ 2yn—2 + dyn—1 +Yn ] . (1112)

Provided that the fourth derivative f) of function f is continuous on (e, b‘) and
M is an upper bound for the values of |f9] on (a,b), the following error estimate

holds: ) )
5,,—[ faz| < =AM (IL.13)

I1.6. Improper Riemann integral.

A fundamental assumption in the definition of the Riemann integral f: [ dz
was the boundedness of the interval (a,b) and the boundedness of function f on
{a,b). However, we often need to work with integrals whose domajfl of integration
(the interval) or the integrand (the function) are unbounded. Such mtegra:ls, where
either the interval or the integrand (or both) are unbounded, are called improper
'Riemann integrals. We will explain the definition of the improper Riemann integral
in this section.

Suppose that function f is defined in the interval (a, b) and that it is integrable
on each interval (a,t) (for a <t < b). If the limit

t
iy
exists, then its value is called an improper Riemann integral with a sinqular upper
The improper Riemann integral of function f is denoted in the same way as the
“ysual” Riemann integral, i.e. [, f dz. Thus, we can write:

j: flz)dz = ‘El:;:l_ /: f(z) dz.

The improper Riemann integral with a singular lower limit can be defined quite
analogously. The definition can even be extended to the case when both the limits

are singular: If the two integrals o “f dz and f: f dz exist (the first one as
an improper integral with a singular lower limit and the second one as an improper
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integral with a singular upper limit) and their sum is defined (i.e. it is not for example
—00 + 00) then we put f:f dz = [’ fdz +f:f dz.

If function f is integrable (in the sense of paragraph I.1.5) on the interval (a, b)
then theimproper Riemann integral of f on {a,b) coincides with the “usual” Riemann
integral'of f on (a, b). Thus, the improper Riemann integral represents an extension
of the definition of the “usual” Riemann integral.

Th;._.ﬁriajpe of the improper Riemann integral | : f dz can either be finite (we
say that the integral _[: f dz  converges) or it can be infinite (the integral f: fdz
diverges).

N ‘ +oo
I1.6.1. Example. Lef us evaluate the improper Riemann integral j p dz.
3t 1

The function f(z) = 1/z is continuous on the interval (1,+c0) and it has an anti-
derivative F(z) = In z. Thus,

t .
f %dx =F({t)-F(1) =lnt-Inl=Int
1
t

. . +00
Since lim / E dz= lim Int= 400, we get: / l dz = +co.
! 1 t—+oo 1 xz

“t—too T

I1.7. Historical remark.

" "Both differential calculus (i.e. limits, derivatives, their applications, etc.) and
integral calculus (i.e. integrals) are together called calculus. Many aspects of finding
and analytically describing tangent lines were worked out by René Descartes (1596
1650), Bonaventura Cavalieri (1598-1647), Pierre de Fermat (1601-1665) and others.
However, we usually consider Sir Isaac Newton (1642-1727) and Baron Gottfried
Wilhelm Leibnitz (1646-1716) to be the inventors of calculus. They were the first
to understand that the process of finding tangents and the process of finding areas
are mutually inverse. Since they lived in the same time, the question of priority over
the invention of calculus has lead to the bitter controversies. Leibnitz was accused of
copying Newton’s work and the Royal Society of London did not exonerate him from
this charge after investigating the matter. Present—day historians and mathematicians
consider that Leibnitz’s and Newton’s inventions were simultaneous, but independent.
Nevertheless, the disputation caused a split in the mathematical world for one and
half centuries. The followers of Newton, mostly British, pursued his methods while
Leibnitz’s pupils, mostly French, Germans and Swiss, followed his approach. Due to
Leibnitz’s superior notation and his simpler mathematical language, his followers were
able to be more successful than their British counterparts in the further development
of calculus.

The original historical definition of the definite integral was different from the
definitions you can find in present—day literature. This is especially due to the fact
that the concept accepted at the time of Newton and Leibnitz is not quite correct
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from the present-day point of view. However, since thig concept is very simple, let
us explain it. »

Suppose that f is a function defined and bounded on the interval {(a, b). We divide
the interval {a,b) into infinitely many “infinitely small” parts. A typical “infinitely
small” part is an interval (z; z+dz ), where dz is an “infinitely small” positive number.
The product f(z)-dz has the following geometric interpretation: The region between
the graph of f and the interval (z,z+dz) on the z-axis can be taken as an “infinitely
narrow” rectangle and if f(z) > 0 then f(z) - dz is the area of this rectangle. The
sum of all “infinitely small” numbers f(z) - dz (for all z € (a,b)) was called the
definite integral of function f on the interval (a, b).

The incorrectness of this approach can immediately be seen - the notion of an
“nfinitely small” positive real number dz is wrong: such a number does not exist! If
you do not believe this, then imagine that you have such a number. Is it e.g. 10767
No, because you can find many positive numbers less than 107%. And what about
dz = 10~2°? Even this dz is not “infinitely small” because there exist many other
positive numbers, less than 10~2°, You can see that the concept of an “infinitely small
positive number” logically leads to the contradiction. Mathematics cannot allow itself
to work with notions which are not defined precisely. (Overlooking this rule has often
in the past lead to surprising contradictions or confusions in mathematical theories
and models.) This motivated Georg F.B.Riemann (1826-1866) to study the definite
integral in detail and put it on solid logical foundations. :

Nevertheless, in spite of the logical incorrectness of the concept of an infinitely
small positive number dz, the idea often still appears in various applications, and we
have not completely abandoned it. We will use it again in paragraphs IV.2.1, Va4l
and V.2.1 which have a motivating character and whose main purpose it to show
that the following definitions of various types of integrals are reasonable and that the
integrals have some physical sense.

I1.8. Exercises.

1. Do the following Riemann integrals exist?
1 2
/ - z+1 dz j Inz dz -
g at—2—6 1z z
2?2 +1
T

1
J
5 3 T —
[ e Lo
2
J

si
1

% dz
2. Evaluate the following integrals.
d.

1 1
j (32 — 4z +7) dz j (8% —12t* + 5) dt % s
-1 0

27
] 274 dg
1
2 1
1

2 1
f svi4zr + 1dzx / 96 du
0 0

(2u +1)*

1/2 x e
/ 22 (14 92%) % dz / sin 5r dr
0 0

46

[er@e [

™
f cos 3y dip
o
1

/2 /2
‘Ll 5(sin z)*/% cos z dz / 15(sin 3z)* cos 3z dz 2z sin(1 — 2*) dz

/2 -1
3 s .
P oride 41+\/2_: 1 g2
/2 vi— 20 +v [ a @ .[-1 a? +y? dy (a#0)
/ﬂ'/ﬂ —2m . 1
T cos z dx f cos’ z dx /
- _— A In(a+z)de (a>0)

2 1
j z3/4 — 22 dz / de
0 0

" dr
j —dz P r——
o 2+cosz 1++x

1112‘/___ e? dx /8
£—1d in®
A e z ./; o s -/o sin”(4z) dz

3. Find the area of the region between the graph of f and the z—a.xm
{'(;c)_::c’-—4m+3, 0<z<3 flz)=1-(z%/4), -2<z<3
flz)=5-522/%, -1<z<8 fle)=1-z, 0<z<4

4. Find the average value of
f(z) = 3z over (0,3)
f(z) =mz +b over (-1,1)

f(z) = Vaz over (0,a)
f(z)=mz+b over (—k,k)

5., Evaluate the following improper integrals.
/-i-oo dz /+m de ' -2 J
o 14z oo 4+ 22 oo 22
f+m _iz_ /+oo y2 . 5 L :
3. x?—1 0 o VB
e dzx e 2 s
L. vame [ f i o>
6. Evaluate F'(z) if function F is defined by the following integrals.

.. v 2
F(@:]/_ cos(t?) dt; >0 F(g,»):/ I
1 . o

'z x

F(z):Lumﬁ

za
F(E)=/: Intdt; z>0

Lo
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III. Riemann Integral of a Function
of Two and Three Variables

II1.1. The double integral — motivation and definition.
The two—dimensional Jordan measure and measurable sets in E;.

III.1.1. Physical motivation. Suppose that we have a thin plate covering the
rectangle R = (a,b) x (c,d) in the zy-plane. The plate need not be homogeneous
and so its planar density (i.e. the amount of mass per unit area — let us denote it
p(z,y)) varies with the position of the point [z,y]. We wish to evaluate the mass M
of the plate.
If density p is constant then M =p-(b—a):(d—c). (Why?)
In a general case when the density is not constant, we can subdivide rectangle
R into many smaller pieces Ry, ..., Ry by a network of lines parallel to the z— and
y-axes. If rectangles Ry, ..., R, are “small enough” then p can be approximated by
a constant on each of them. A reasonable value of this constant is p(Z;) where Z;
is some point from R;. Then the approximate mass of the part of the plate covering
rectangle R; is p(Z; - Az; Ay; where Az; and Ay; are the lengths of sides of R;.
The approximate mass of the whole plate is .
n
> 0(2i)- Azi Ay
i=1
It is now natural to expect that the exact value of the total mass M of the plate
will be equal to the limit of this sum as n — +o00, and the numbers Az; and Ay;
(t=1,2,...,n) tend to zero.

II1.1.2. Geometric motivation. Suppose that z = f(z,y) is a nonnegative func-
tion on set R € E; and we wish to define and evaluate the volume V of the region
between the graph of function f and the zy-plane. Suppose for simplicity that R is
the rectangle (a,b) x (c,d).

If f is a constant function on R then the volumeis V = f-my(R) = f-(b—a)-
(d—c¢).

If f is not a constant function then we can use the same partition of R into n
smaller pieces Ri, ..., R, as in paragraph III.1.1 and we can approximate the volume
of the region between the graph of function f on rectangle R; and the zy—plane by
the number f(Z;) - Az; Ay; for some Z; € R; (i = 1,2,...,n). The volume of the
whole region between the graph of f on set R and the zyﬁpla.ne can be approximated
by the sum

}: f(Zi) - Az Ay, .

=1
The volume of the region between the graph of function f on R and the zy-plane
can now be naturally defined as the limit for n — +o0o0 and the numbers Azx;, Ay;

(i=1,2,...,n) tending to zero.
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I11.1.3. Rectangular region in E, and its partition. If (a,b) is a closed interval
on the z-axis and (¢, d) is a closed interval on the y-axis then the Cartesian product
R = (a,b) x (c,d) forms a rectangle in E;. We can subdivide this rectangle by a
network of lines parallel to the z— and y-axes into n smaller rectangles Ry, ..., R,.
The system of these smaller rectangles is called the partition of rectangle R.

If this partition is named P and if the lengths of sides of smaller rectangles
Ry, ..., R, are Azy, Ay, ..., Ar,, Ay, then the number which is equal to the
maximum of Az, Ay, ..., AZn, Ay, is denoted by || P|| and it is called the norm
of partition P. ‘ '
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IIL.1.4. Riemann sums and their limit. Let z = f(z,y) be a bounded function
on a bounded set D C E;. Let R be the smallest recta.ngle in E; whose sides are
parallel to the z— and y-axes and which contains D. Let P be a partition of R to
smaller rectangles Ry, ... Rn whose lengths of sides are Az, Ay, ..., Azn, Ayp.
The smaller rectangles can be nmimbered so that those of them which’ are ms;de D are
Ry, ..., Rm. (See Fig.3.) Let V be a system of points Z; € R; (i =1,2,...,m). Then
the Riemann sum of function f on set D corresponding to partition P a.nd system V
is . - il

s(,PV) =) f(Z)- Az by:.

i=1

We say that number S is the limit of the Riemann sums s(f, P,V) as ||P|| — 0+
if to every given € > 0 there exists § > 0 such that for every partition P of R and for
every choice of V, ||P|| < § implies |s(f, P,V) — S| < e. We write:

s(f,P,V) = : (IIL1)

IIPii—'°+

II1.1.5. The double integral. If the limit in (II.1) exists, then function f is called
integrable in set D and S is called the double integral of function f on D. The integral

is usually denoted as
j/ f(z,y) dzdy  or j[ fdzdy.
D D
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II1.1.6. Remark. It follows from paragraph II1.1,2 and from the definition of the
double integral that if the function y = f(=z,y) is nonnegative and integrable on set
D € E; then the integral [[;, f dzdy defines and evaluates the volume of the region
between the graph of f on D and the zy-plane. However, you will see in Sections
II1.5 — II1.7 that the volumes of even more general regions in E3 can also be defined
and evaluated by means of volume integrals.

The notion of a bounded set in E; is too general for practical purposes. For
example, it can be shown that there exist bounded sets D € Eg such that even the
constant function is not integrable on D. In order to distinguish between these “bad”
sets and other “reasonable” sets, we introduce the notion of a so called measurable
set.

II1.1.7. A measurable set in E; and its Jordan measure. Suppose that D is
a bounded set in E;. We say that this set is measurable (in the sense of Jordan) if
the constant function f(z,y) = 1 is integrable on D. In this case, we call the number

ma(D) = ./:/Ddzdy

the two-dimensional Jordan measure of set D.

mz(D) has a very simple geometric interpretation - it defines and evaluates the
area of set D.

It is important to have a criterion which enables us easily to recognize some
simple measurable sets. We will give such a criterion in paragraph II1.1.10. However,
we first list some sets whose measure is zero.

IIL.1.8. Some sets whose two—dimensional Jordan measure is zero. It can
be proved for example that the following sets in E; have the measure equal to zero:

a) Sets consisting of a finite number of points.

b) Graphs of continuous functions y = ¢(z) or z = (y) on closed bounded inter-
vals.

¢) So called simple smooth curves, respectively simple piecewise-smooth curves (see
Section IV.1).

The next theorem is quite obvious, and it also concerns sets of measure zero.

111.1.9. Theorem. a) If Ny, N2, ..., N, are sets whose measure is zero then
ma (u;;1 N.-) =0.

b) ¥ M CN and my(N)=0 then my(M) =/)
II1.1.10. Theorem. (Sufficient and necessﬁry‘condition for measurability

of a set in E;.) A bounded set D C E; is measurable if and only if mq(8D) = 0
(where 8D is the boundary of D).
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II1.2. Existence and important properties of the double integral.

The two statements “f is integrable on set D” and “the double integral
Jfp f dzdy exists” say exactly the same.

II1.2.1. Existence theorem for the double Integral. Let D be a measurable set
in E; and let f be a bounded function on D whose set of discontinuities has measure
mg equal to zero. Then f is integrable on D.

In particular, if D is a measurable set and f is a bounded continuous function
on D then f is integrable on D.

II1.2.2. Important properties of the double integral. The double integral has
many properties which are exactly the same as the properties of the one-dimensional
Riemann integral explained in paragraphs I11.3.1 - II1.3.5. Let us mention only several
of them:

a) (Linearity of the double integral.) If functions f and g are integrable on
set D C E; and a € R then

J[+awa = [[ faa+ [[ gaean,
jLa-fdmdy:a-[jD_fdxdy.

b) (Additivity of the double integral with respect to the set.) If D; and
D, are measurable sets such that my (D1 n Dz) = 0 (i.e. Dy and D, are not
overlapping) and if f is integrable on Dy and on Dy then

f fd:rdy-l—/ fdzdy:f/ f dz dy.
Dy Dy DyuD,

c¢) If function f is integrable on set D € E; and function g differs from f at' most
on a set whose measure is zero then g is also integrable on D and

//ng::dy - '[fD,fdzdy.'

d) D CE; and mg(D) = 0 then /jfdzdy:(}
for every function f. 2

Proposition ¢) shows that the behaviour of the integrated function on a set of
measure zero does not affect the existence and the value of the double integral. Thus,
from the point of view of integration on set D, whose boundary has measure zero, it
is not important whether D is considered open (i.e. without its boundary) or closed
(i.e. with its boundary).

51



II1.3. Evaluation of the double integral — Fubini’s theorem and
transformation to the polar coordinates.

Fubini’s theorem transforms the evaluation of a double integral to the computa-
tion of two single (= one—dimensional) integrals. It can be applied if the domain of
integration is a so called elementary region.

I11.3.1. Elementary region in E;. a) Let y = ¢1(z) and y = ¢2(z) be continuous
functions on the interval (a,b) and let ¢;(z) < ¢a(z) for all = € (a,b). Then the set
= {[z,y] €Eg; a<z <b, ¢1(z) Sy < daf2)}

is called the elementary region relative to the x-axis.
b) Let z = ¢1(y) and = = t2(y) be continuous functions on the interval (c,d) and
let 9, (y) < ¥a(y) for all y € (c,d). Then the set

D = {[t,s) € Ey; c <y < d, $1(y) < = < a(y)}

is called the elementary region relative to the y-azis.

g, 17
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D
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Fig. 4a : : Fig. 4b

Elementary regions are measurable sets in E3. Let us now explain the idea of
integrating of function z = f(z,y) on the elementary region relative to the z-axis
(see Fig.4a). Imagine that we can cut the region into infinitely many infinitely na-
rrow vertical stripes. One such stripe is the line segment PQ on Fig.4a. We fir-
st integrate f on each such segment as a function of one variable y — we obtain

= [ ‘b’((:)) f(z,y)dy. Certainly, this depends on = because the position of the
hne segment PQ depends on z. Then we integrate F(z) as a function of z from a to
b. Thus, we obtain formula (IIL.2) (see the next paragraph II1.3.2).

The next theorem precisely formulates the assumptions under which we can
apply the described method, and it also treats the cas¢ when D is an elementary
region relative to the y—axis. ~ :

II1.3.2. Fubini’s theorem for the double integral. a) Let D be the ele:ﬁentmy '

region relative to the z—axis from paragraph IIL.3.1. Let the function z = f(z,y) be
continuous on D. Then
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] | fay) dody = f b( L i{)) f(z,y) dy) de. (II1.2)

b) Let D be the elementary region relative to the y-axig from paragraph II1.3.1. Let
function z = f(:i:,y) be continuous on D. Then

[ppensa ([ sne)a

II1.3.3. Example Evaluate the integra.l JIo( p(2z + 3y + 5) dzdy where D is the
region bounded by the curves y = iz,y=1/randz=2.

The given curves divide the zy-plane into various regions (Sketch a figure!) but
only one of them is bounided and this is D. It can be described as the set of all points
[#,y] € E; such that +/2/2 <'z'<'v/2and 1/z <y < 2z.

D is measurable (because it.is bounded and its boundary has the measure equal
to zero — see . Theorem III.1.11). Function f is continuous on D. Thus, using the
Fubini theorem 1I1.3.2, we obtain:

‘/:/;(23:+3y+5)dzdy = f\/:i('/f:(23+3y+5) dy) .da: -

e = A 3
= /ﬁ/2[2zy+ y? + 5y] —1/zdz s j\/'/z(“ + 622 +10x—2—§—2——;) de =

_ [20e* 2 3 i
-[ o 52"~ 22 + o -51”]‘/7

BV24+75-5In2.

You remember that a powerful method for computation of a one-dimensional
integral is the method of substitution. This method can also be used when we evaluate
a double integral. When applying it, we usually say that we transform the mtegra.l
to new coordinates. The most—used new coordinates in E; are so ca.lled polm: (or
generalized polar) coordinates.

II1.3.4. Polar coordinates in E;. The position of a point X € E; is uniquely
given by its polar coordinates r,  whose geometric meaning is the following: r is
the distance of X from the origin O and ¢ is the angle between the positive part of
the z-axis and the line segment OX. ¢ is measured from the z—axis towards the line
segment OX. (Sketch a figure!) The relation between the Cartesian coordinates z, y
and the polar coordinates r, i is given by the equations

T =rcosp, y=rsin. (IIL.4)

IIL3.5. Transformation of the double integral to the polar coordinates.

Suppose that we have to evaluate the integral [[, f(z,y) dzdy. We can use the

equations (III.4) and replace z, y by r cos p, respectively r sin ¢. However, we must

also

a) change D (analogously to the change of the limits in the one-dimensional integral
if we apply the method of substitution - see Theorem I1.4.6),
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b) substitute for the term dzdy in the integral (analogously to the equation
dz = ¢'(t) dt if we use the substitution = = g(t) in a one-dimensional integral).
Set D corresponds to some other set D' in the polar coordinates. Optimally,

every point [z,y] € D should have just one opposite point [r,] € D' (such that
z = rcosp and y = rsin ). However, since the sets of measure zero play no

role, the one-to-one correspondence between the points [z,y] € D and the points
[r,¢] € D' can be disturbed on a set of measure zero, both on the side of D and on

the side of D'.
Tt can be proved that dz dy must be substituted in this way:
dzdy = r drdp. (I11.5)

The factor r on the right hand side is a so called “Jacobian” (the abbreviation of the
“Jacobi determinant”) and you will find more about it in Section IIL.9.

The transformation of thé double integral to the polar coordinates has a sense
if it leads either to the simplification of the integrand (see example II1.3.6) or to the
simplification of the domain of integration (see example I11.3.7). It follows from the
geometric sense of the polar coordinates that r > 0 and ¢ can be taken from an
interval whose length does not exceed 27 (i.e. the interval (0, 2x)).

II1.3.6. Example. Evaluate the integral [[,(z +y) dzdy where
D = {[z,y] € Ez; 2> 0, y >0, 2 +y* <4}.

D is the intersection of the disk (with the center at the origin and radius 2) and
the first quadrant. It corresponds to the domain D' = {[r,p] € E3; 0<r <2, 0 <
@ < 7/2} in the polar coordinates. Thus, using the transformation (1I1.4), (IIL5), we

obtain:

[/;(a:+y)dzdy =.]‘[D'(;'C05<p+r sin @) r drdp =

2 /2 2
=1 j (f % (cos (,p+sin<,a)dtp) dr=/ r’[aintp—costp];ﬁdr=
o “Jo 0

2
= / 2l dr = %.
[

1) We have applied Fubini’s theorem.

I1L.3.7. Example. Evaluate the integral [[,(z? + y*)"/?dzdy where D is a
triangle with the vertices [0,0], [1,0], [1,1].

D can also be described as the set of all points [z,y] such that 0 < z < 1 and
0 < y < z. Transforming these inequalities to the polar coordinates, we obtain

O<rcosp<l, 0<rsing<rcosep. (11L.6)

The second inequality implies: 0 < sin ¢ < cos ¢ which means that 0 < ¢ < /4.
The first inequality in (IIL6) implies: 0 < r < 1/cos . Hence D corresponds to the
set D' = {[r,p] € E2;0 < ¢ < /4, 0 <r < 1/cos ¢} in the polar coordinates. Thus,

54

using the transformation (I11.4), (IIL5) and afterwards applying Fubini’s theorem,
we obtain:

[l ff b= [
—_—dzdy = - = —
bVt Y D'rrrqo /0 (/0 r)dcp

_ /f,4 1 dw _ /Kfl cos dtp B 2) /\/‘3]2 dt -
b cosp o l-—sin®yp 5 1-¢

vif2, g 1
=1 SN = 1[_ Vi/2 2+
_2/[, (1—t+1+t)dt_2[ In(1-1)+In(1+1)], =3zl —

%) We have used the substitution sin ¢ = ¢, cos ¢ dyp = dt.

=

9

I11.3.8. Generalized polar coordinates in E;. We shall denote these coordinates
again by r, ¢. They are analogous to the polar coordinates, though their origin
need not be the same as the origin of the Cartesian coordinates and they are not
“isotropic”, i.e. the rate of change of r is different in the z-direction and in the y-
direction. The relation between the Cartesian coordinates z, y and the generalized
polar coordinates r,  is

T =zxgt+arcosyp, y=1yy+brsing (IIL.7)

where (2o, 1] is a given point in E; and a, b are positive constants.

By analogy with (IIL.5), it can be proved that if we transform a double integral
to the generalized polar coordinates then dz dy must be substituted in this way:

dzdy = rab drdp. (1I1.8)

The factor rab on the right hand side is again the “Jacobian”, and it will be explained
in Section IIL.9.

The transformation of a double integral to the generalized polar coordinates
usually simplifies the integral if the integrand depends on z and y through the ex-
pression (z —29)%/a® + (y — yo)*/¥* or if the domain of integration is the interior
of an ellipse (z —0)?/a® +(y — yo)?/b* =1 or a sector of an ellipse.

IIL.3.9. Example. Evaluate the integral [,z dzdy where
D={[z,y) € Eg; (z—2)*+(y—-1)/4* < 1}. _
We can observe that if we use the transformation
z=2+rcosp, y=1+4+2rsing (II1.9)

then the points [z,y] fill up D if and only if the points [r,¢] fill up the set D' =
{lr¥] € Ez; 0 < r <1, 0 < ¢ < 2r}. Using transformation (111.9), equality
dz dy = 2r dr dp (following from (IIL.8)) and also applying Fubini's theorem, we get:

ffpzdzdy=j[DJ(2+rcw¢)drd¢=/oh(/01(2+rcoszp)dr)d(p=

2w 2w
= o [2r+%rzcosgo];dcp=f (241 cos p) dp = 4r.
0
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I1L.3.10. Remark. In fact, transformation (II1.9) is not a one-to—one Fnapping of
set D' onto set D in example II1.3.8. The one-to—one c?rrespondence is d1sturbed‘o.n
the subset D) = {[r,p] € Ea; r=0,0<¢ < 21r} of D'. (You can ob'se:rve that Dy is
a subset of the boundary of D'.) This is clear, because t:ransform_atmn (III:Q) maps
all points of D}, onto the point [2, 1] in D. Thus, the point [2,' 1] in D h?s m.ﬁmt;:ll.y
many opposite points in D' — i.e. all points of D{}: However, since ma(Dp) = 0, this
does not affect the existence and the value of the integral.

IIL4. Some physical applications of the double integral.

Suppose that a two-dimensional thin plate coincides with a me:a.surable set D'in
the zy-plane. The plane need not be homogeneous. It means that its planar dfans:ty
(amount of mass per unit of area) need not be constant. Let the planar density be
given by function p(z,y). The double integral enables us to define a.ndl evaluate some
fundamental mechanical characteristics of the plate. Suppose that p is expressed in

[kg - m™?]. Then we have:
Mus M= [[ padzdy Degl
D : _
Static moment about the z—axis M; = jj;) y p(a:,y) dedy [kg-m],

Static moment about the y-axis My = j[D:c -p(z,y) dzdy [kg m),

M, M

Center of mass [Zm,Ym) T = _M!'p Ym = ™ [m],

Moment of inertia about the z-axis Jr = j jD v*ple,y)dedy  [kg-m?],
Moment of inertia about the y—axis Jy = ] L z* - p(z,y)drdy [kg-m?],
Moment of inertia about the origin - Jo = ‘/:/I:"(:z:2 +9%) - p(z,y)dzdy [kg-m?).

Suggest a formula for the moment of inertia about a general straight line in E,
whose equation is az + by + ¢ = 0!

IIL5. The volume integral — motivation and definition. .
The three—dimensional Jordan measure and measurable sets in E;.

The theory of the volume integral is almost identical with the theory of the
double integral. The main difference lies in the simple fact that we have one more
dimension. Thus, we can repeat almost everything that was written abou_t t.he double
integral. The same holds for the three-dimensional Jordan measure. This is why we
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present the theory of the volume integral very briefly and we do not explain the
details. '

On the other hand, since one more dimension causes higher variety of possible
domains of integration as well as integrated functions, you will see that the methods of
evaluation of the volume integral, though their techniques are again based on Fubini’s
theorem and on the transformation to other coordinates, are usually technically more
complicated than in the case of the double integral.

III.5.1. Physical motivation. Suppose that we have a body whose density is
p(z,y,z). We wish to evaluate the mass M of the body. Suppose for simplicity that
the body has the form of the block B = {a,b) x (c,d) x (r,s).

If density p is constant then M =p-(b—a)-(d—c) x (s —r). (Why?)

However, in a general situation when the density is not constant, we can sub-
divide B into n smaller rectangular cells By, ..., B, by planes parallel to the coor-
dinate planes xy, 2z and yz. If the cells B, are “small enough” then we can appro-
ximate p by a constant on each of them. A possible value of this constant is p(Z;)
where Z; is some point from the cell R;. Then the approximate mass of cell R; is
p(Z;) - Az Ay; Az; where Az;, Ay; and Az; are the lengths of sides of R;. The
approximate mass of the whole body is

n

> p(Z:) - A; Dy; Az.

i=1 L
The exact value of the mass M of the body is equal to the limit of this sum as
n — +oo and the numbers Az;, Ay;, Az (i=1,2,...,n) tend to zero.

IIL5.2. A block in E; and its partition. If (a,b) is a bounded closed interval
on the z-axis, (¢, d) is a bounded closed interval on the y-axis and (r,s) is a closed
bounded interval on the z—axis then the set B =i(a,b) x (¢,d) x {r, s) forms a block
in E3. We can subdivide this block to n rectangular cells By, ..., B, by planes
parallel to the zy-plane, zz-plane and yz—plane. The system of these cells is called
the partition of B, P s
- .. If this partition is named P and if the lengths of sides of smaller cells By, ...,
By are Az, Ay, Az, ..., Azy, Ayn, Az, then the maximum of all these lengths
is denoted by || P|| and it is called the norm of partition P. '

11.5.3. Riemann suins and their limit. Let u = f(z,y, z) be a bounded function

a bounded set D C Es. Let B be the smallest block in E; whose sides are parallel
0 the zy—, z- and yz-planes and which contains D. Let P be a partition of B into
aller rectangular cells By, ..." B, whose lengths of sides are Az;, Ay, Az, ...,
Zn, AYn, Az,. These smaller cells can be numbered so that those of them which
e inside D are By, ..., Bm. Let.V be a system of points Z; € B; (i = 1,2,...,m).
hen the Riemann sum of function f on set D corresponding to partition P and

(fBV) = Y f(Z)- Aci Ay A

i=1
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1IL1.3.10. Remark. In fact, transformation (II1.9) is not a one—to—o_ne fnapping of
set D' onto set D in example I11.3.8. The one-to-one c:)rrespondeuce is dJsturbed‘o-rf
the subset D) = {[r,¢) € Eg; 7=0,0<¢ < 2r} of D'. (You can ob'serve that Dy is
a subset of the boundary of D'.) This is clear, becausg ﬁra.nsform'atmn (III:Q) foaplys
all points of D}y onto the point [2,1) in D. Thus, the point [2,‘1] inD ha:s mﬁmt;1 y
many opposite points in D' - i.e. all points of L"{,1 However, since mz(Dg) = 0, this
does not affect the existence and the value of the integral.

IIL4. Some physical applications of the double integral.

Suppose that a two-dimensional thin plate coincides with a mt-?asura.ble set D.in
the zy-plane. The plane need not be homogeneous. It means that its planar dtanmty
(amount of mass per unit of area) need not be constant. Let the planar density be
given by function p(z,y). The double integral enables us to define a.nd‘eva.luate some
fundamental mechanical characteristics of the plate. Suppose that p is expressed in

[kg - m~%]. Then we have:

Mass M = ffpp(w,y) dzdy [ke],

M, = ij)y-p(w,y'i dedy [kg-m],

Static moment about the z—axis

Static moment about the y-axis

My = [[ 2 pta)dsdy kg

My =Y )
Center of mass [Zm,Ym) Im =0 Ym =31 )

Moment of inertia about the z-axis J; = .[/D v?plz,y)dzdy [kg-m?],
Moment of inertia about the y-axis Jy = / [D z?. p(z,y)dzdy [kg-m?),

Moment of inertia about the origin - Jo = j/);(zz +v°) - plz,y)dzdy [kg-m?].

Suggest a formula for the moment of inertia about a general straight line in E,
whose equation is az + by + ¢ = 0!

IIL5. The volume integral — motivation and definition. .
The three—dimensional Jordan measure and measurable sets in Ej.

The theory of the volume integral is almost identical with the theory of the
double integral. The main difference lies in the simple fact that we have one more
dimension. Thus, we can repeat almost everything that was written abou_t the double
integral. The same holds for the three-dimensional Jordan measure. This is why we
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present the theory of the volume integral very briefly and we do not explain the
details. '

On the other hand, since one more dimension causes higher variety of possible
domains of integration as well as integrated functions, you will see that the methods of
evaluation of the volume integral, though their techniques are again based on Fubini’s
theorem and on the transformation to other coordinates, are usually technically more
complicated than in the case of the double integral.

II1.5.1. Physical motivatioﬁ. : éhppoée that we have a body whose density is
p(z,y,z). We wish to evaluate the mass M of the body. Suppose for simplicity that
the body has the form of the block B = (a,b) x (¢,d) x (r,s).
If density p is constant then M =p-(b—a)-(d—c) x (s —r). (Why?)
However, in a general situation when the density is not constant, we can sub-
divide B into n smaller rectangular cells By, ..., B, by planes parallel to the coor-
dinate planes ry, zz and yz. If the cells By are “small enough” then we can appro-
ximate p by a constant on each of them. A possible value of this constant is p(Z;)
where Z; is some point from the cell R;. Then the approximate mass of cell R; is
p(Z;) - Az; Ay; Az; where Az, Ay; and Az; are the lengths of sides of R;. The
approximate mass of the whole body is :
n VL "
> 6(Zi) - Azi Ay Az
=1 L
The exact value of the mass M of the body is equal to the limit of this sum as
n — +oco and the numbers Az;, Ay;, Az (i =1,2,...,n) tend to zero.

IIL5.2. A block in E; and its partition. If (a,b) is a bounded closed interval
on the z-axis, (c,d) is a bounded closed interval oni the y—axis and {r,s) is a closed
bounded interval on the z—axis then the set B ={a, b} x (¢,d) x {r, s} forms a block
in Es. We can subdivide this block to n rectangular cells B, ..., By, by planes
parallel to the zy-plane, zz-plane and yz—plane. The system of these cells is called
~ the partition of B. B
If this partition ig named P and if the lengths of sides of smaller cells By, ...,

B,. are Azy, Ayy, Az, ..., Azyn, Ayy, Az, then the maximum of all these lengths
is denoted by ||P|| and it is called the norm of partition P.

- 1I1.5.3. Riemann suins and their limit. Let u = f(z,y, z) be a bounded function

a bounded set D C Es. Let B bé the smallest block in E; whose sides are parallel
0 the zy—, zz- and yz-planes and which contains D. Let P be a partition of B into
maller rectangular cells By, ..."B, whose lengths of sides are Az;, Ay, Az, ...,
Azn, Ayn, Az,. These smaller cells can be numbered so that those of them which
e inside D are By, ..., By. Let.V be a system of points Z; € B; (i = 1,2,...,m).
hen the Riemann sum of function f on'set D corresponding to partition P and
stem V is

s(f,R,V) ‘= i f(Z.) . Az;_"Ay.- Az,
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We say that number S is the limit of the Riemany sums s(f,.I.’, V) as ||P|| — 0+
if to every given € > 0 there exists § > 0 such that for every partition P of B and for

every choice of V, |P|| < & implies |s(f, P, V) — 5| < e. We write:

i V) = 8§. ~ (11L10)
leﬁr_?w s(f,P,V) _

IIL5.4. The volume integral. If the limit in (IIL.10) exists, then function fis
called integrable in set D and S is called the volume integral of function f on D. The
integral is usually denoted as

f/ flz,y) de dy dz or fjpfdxdydz.
D

You may also find another name for the volume integral in literature: - the
triple integral.

IIL5.5. A measurable set in E; and its Jordan measure. Suppose that_ D is
a bounded set in Es. We say that D is measurable (in the sense of Jordan) if the
constant function f(z,y,z) = 1 is integrable on D. In this case, we call the number

ms(D) = ffDdzdydz

the three-dimensional Jordan measure of set D.

ms(D) has an important geometric meaning — it defines and evaluates the

volume of set D.

IIL.5.6. Some sets whose three—dimensional Jordan measure is zero. The
following sets in E3 have the measure equal to zero:

a) Sets consisting of a finite number of points or bounded curves.

b) Graphs of continuous functions z = w(z,y) or y = ¥(z, 2) or & = y(y, z) defined
on bounded measurable sets in Es.

¢) So called simple smooth surfaces, respectively simple piecewise-smooth surfaces
(see Section V.1).

Usually, if M is a set in E¢ (with k = 1, 2 or 3) and we say that M has measure
zero, we mean that the k-dimensional measure of M is zero, i.e. mi(M) =0.
IIL.5.7. Theorem. a) If Ny, Ny, ..., N, are sets in E3; whose measure is zero then
ms (u;*___l N.-) =0.

b) If M CN and my(N)=0 then ms(M)=0.

IIL.5.8. Theorem. (A sufficient and necessary condition for measurability

of a set in E;.) A bounded set D C E3 is measurable if and only if mg(8D) =0
(where 8D is the boundary of D).
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IIL.6. Existence and important properties of the volume integral.

The two statements “f is integrable on set D* and “the volume integral
[Jp fdzdy exists” say exactly the same.

IT1.6.1. Existence theorem for the volume Integral. Let D be a measurable
set in B3 and let f be a bounded function on D whose set of discontinuities has
measure my equal to zero. Then f is integrable on D.

Specifically, if D is a measurable set in E3 and f is a bounded continuous function
on D then f is integrable on D,

I11.6.2. Important properties of the volume integral.

a) (Linearity of the volume integral.) If functions f and g are integrable on
set D C E3 and « € R then

fj/D(f+g)dzdydz= //Lfdzdydz{-.///ugdmdydz,
//La-fdxdydz=a.f/D'fdzdydz.

b) (Additivity of the volume integral with respect to the set.) If Dy and
D; are measurable non-overlapping sets in E3 (i.e. m; (Dl n Dg) =0)and f is
integrable on Dy and D; then

flefhdydz+/fD1fdxdydz = jj/nlup,fdzd”dz'

¢) If function f is integrable on set D € E; and function g differs from f at most
on a set whose measure is zero, then g is also integrable on D and

ijyhdydz=/fodzdydz.

d) IfD C E; and ma(D) = 0 then /jj fdzdydz=0
for every function f. D

Thus, the behaviour of the integrated function on a set of measure zero does not
affect the existence and the value of the volume integral.

I11.7. Evaluation of the volume integral — Fubini’s theorem and
transformation to the cylindrical and to the spherical coordinates.

Fubini’s theorem for the volume integral transforms the evaluation of the integral

to the computation of one single and one double integral. It can be applied if the
domain of integration D is a so called elementary region:
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1IL7.1. Elementary region in E;. a) Let D;y be a measurable closed set in
E; and z = ¢i(z,y) and z = $2(z,y) be continuous functions on Dyy such that

$1(z,y) < pa(z,y) for all [z,y] € Dzy. Then the set
D = {[z,4,2] € Es; [2,4] € Day, $1(z,9) S 2 < a(2,9)}
is called the elementary region relative to the zy-plane. (See Fig.5.)

We can-also define quite analogously an elementary regioﬁ relative to the zz—
plane and an elementary region relative to the yz-plane. Try to write down these

definitions for yourself! z 4

Fig. 5

Elementary regions are measurable sets in E;3. The idea of integrating function
f(z,y, z) on the elementary region relative to the zy-plane is the following: Imagine
that we cut the region into infinitely many vertical line segments. One of them is the
line segment PQ in Fig. 5. We first integrate f on each such segment as a function of
one variable z — we obtain F(z,y) = f;'((:_:')) f(z,y,z)dz. This depends on z and y
because the position of the line segment PQ) depends on z and y. Then we integrate
F(z,y) as a function of z and y on set Dyy. Thus, we obtain formula (IIL.11) (see

the next paragraph II1.7.2).

IIL7.2. Fubini’s theorem for the volume integral. Let D be the elemeptary
region relative to the zy—plane from paragraph IIL.7.1. Let function u = f(z,y,z) be

continuous on D. Then
$a(z,y)

f/Df(x,y,z) dodydz = fjpu(/m,y) f(@,y,2) dz) dedy.  (IL1Y)

Formulate for yourself analogous theorems for the integration on the elementary
region relative to the zz—plane and the elementary region relative to the yz—plane!

IIL.7.3. Example Evaluate the integral [[[,(z+2) dzdydz where D is the region
in E3 bounded by the surfaces 22 + y2 =2, 2z = —2-z,z= 2+y.

The given surfaces divide E3 into more regions, but only one of them is bounded
and this is D. It is a part of the cylinder z? +y? <2 bounded by the plane z = —2—-=z
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from below and by the plane z = 2 + y from above. Thus, D is the elementary region
relative to the zy-plane with Dyy = {lz,y] € E3; 22 +y* < 2} and ¢y(z,y) = —2~z,
¢2(z,y) = 2 + y. Applying Theorem II1.7.2, we obtain

3 2+y
//f(z+2)dxdydz = f/ (f (2 +2) dz) dady =
D ‘ Dey VW—-2-2
= f f [2/2+2:)*tY dzdy =
z+y?<2
VvZ o pam
=1) ]0 (./; (%rz sin® @ — %_rz ccsgtp+4r sin ¢ — 4r cos p+8)rdcp) dr =

=/ 167 r dr = 16x.
0

1) We transform the double int'e'gr:a.l on D,y to the polar coordinates.

IIL.7.4. Remark. Fubini’s theorem III.7.2 transforms the volume integral to the
composition of the two integrals — the outside double integral and the inside single
integral. It is sometimes quite useful to do this conversely, i.e. to transform the
volume integral to the outside single integral and the inside double integral. We
allow ourselves to omit the corresponding theory (because it is quite analogous to
the contents of paragraphs II1.7.1 and IIL.7.2) and we show this procedure:in the
following example. c -

IIL7.5. Example. Evaluate the volume V' of the oblique cone C' = {[z,y,2] €
Es; 0< 2 <5, (z—22)* + % < 22} . _

The volume of C is

Vo [ffsstte = [ e =0 e
=2 ‘Ls(‘[uz(lhrzdzp) dr) dz = /oswzsdz = 622”.

2) The inside double integral is trans-
formed from the Cartesian coordinates
z, y to the generalized polar coordina-
tes r, ¢ by the equations r = 2z 4
Z cos ¢, Yy = Z sin @.

I11.7.6. Cylindrical coordinates in
Es. The cylindrical coordinates of
the point X = [z,y,2] € Ej are r,
©, w whose geometric meaning is the
following: ; r, @ are the polar coordina-
tes of the point [z,y] in the zy-plane Fig. 6
and w = 2. Thus, the relation between i
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cylindrical coordinates are:
(1I1.12)

the Cartesian coordinates &, y, z of point X and its

r=rcosyp, y=rsing, 2z=uw

When transforming a volume integral to the cylindrical co?rdiflatcts, we must
also substitute for dz dy dz. It can be proved that the right substitution s

dedydz = r drdpdw. : (II1.13)

See Section 1119 for more details.)
( It follows from the geometric sense of r, and w that r > 0, ¢ can be taken 1from
any interval whose length is at most 27 and w € R.' The tra..tlsformat:.}o:}ll ofda vo ‘u.n:’ei:'
integral to the cylindrical coordinates usua.llj( sunphﬁe? the 1.ntegra1 1d tde og:m:; !
integration is a cylinder (or a sector of2a+cy£mder) or if the integrand depends
and y mainly through the expression 2% +y°.

yThe transformation of the volume integra.l II7, nf _dx dy dz leaﬁs ‘:lczi an;};e;
integral, in variables r, ¢, w, on a set D'. Optlmallj-(, equations (II.I.12) ; t(})l c te e s
one—to-one mapping of D' onto D._N_evertht-aless, since the behaviour of the in ;g;l o
on a set of measure zero (the thrée-dimensional measure mgy because we are e:i ing
with the volume integral) does not affect the integral, the one-to-one corresp?]ntgnce
between the points of D' and D can be dislturbed on a set of measure zero X 0 thcm
the side of D' and on the side of D. This is also vahd for tra.ns.formatlons g o e:
coordinates (spherical, generalized cyliné!.rica.l, generalized spherical, etc.) and so w
will not deal with it in detail in this section.

1IL7.7. Example. Find the volume of the region D bounded below by the plane

2 = 0, laterally by the circular cylinder z? + (y — 1) = 1, and above by the

paraboloid z = z? +y2.

The volume of D is identical with the three—dimena'ional Jordan measure (;j'
D (see paragraph I1L5.5). So we denote it by ms(D). It is .def.ined b}]rl thelxint:g'(r:al
[fJp dz dydz. Let us evaluate this integral by the transformation to the cylindr

coordinates. - o PR o
i z
Region D is a set of points [z,y,2z] € Es such tha <z = :
2 +(y €1)2 < 1. The last inequality is equivalent to z? +y? — 2y < 0. Transforming
it to the cylindrical coordinates r, ¢ and w, we obtain
r? —2rsinp <0,
r < 2sin .
The inequalities 0 <z <z?+y* are equivalent to
0<w<ri
i ities gi imi i tion with respect to r and w. The -
These inequalities give the limits of integral and
ﬁm?:: of eigltegraa,f.i01:l can be found by means of the orthogonal prOJectlox} of DTt]:;n
the zy—plane. The projection is the disk D, with the center [0,1] and radius 1. The

angle made by.all possible straight lines passing through the origin and entering D,g,
measured from the positive part of the r—axis, runs from ¢ = 0 to ¢ = m. Hence the

volume is

62

w p2sinp pr? x
ma(D)=//f a'—'tdydz=f / j r dw dr d(p:/ 4 sin' p dip = B
D o Jo 0 0

II1.7.8. Spherical coordinates in
Ej3. The spherical coordinates of the
point X = [z,y,2] in E; are r, ¢ and X
¥. They have this geometric sense: r |
is the distance of point X from the |
origin O. ¢ is the angle between the r / ) 4
line segment OX' (where X' is the

orthogonal projection of point X to ~ '

the zy-plane) and the positive part 7] :
of the z-axis (measured from the z— X
axis). ¥ is the angle between the li- ¥

ne segment OX' and the line segment
OX (measured from the line segment £
OX'. This geometric interpretation of
the spherical coordinates easily leads Fig. 7
to the following equations: o

z=rcosdcosp, y=rcosdsiny, z=rsind. (IIL.14)

When transforming a volume integral from the Cartesian coordinates z, y, z to
the spherical coordinates r, , 9, it is also necessary to transform dz dy dz. It can be

proved that
dzdydz = r? cos 9 drdpdd. (II1.15)
(See Section IIL.9 for more details.)

It follows from the geometric sense of r, ¢ and ¥ that r > 0, ¢ can be taken from
any interval whose length is at most 27 and ¥ can be taken from an interval whose
length does not exceed 7 (usually (—x/2,7/2)). The transformation of a volume
integral to the spherical coordinates usually simplifies the integral if the domain of
integration is a ball or a sector of a ball (a ball is the interior of a sphere) or if the
integrand depends on z, y and z mainly through the expression z? + y2 = 22.

TIL7.9. Example. Find the volume of the upper region-D cut from the ball z2 +
y?> + 2% <1 by the cone z%= %(;ﬁ +42).

' ,"I:‘Ihe inequality defining the ball in the spherical coordinates r, ¢ and ¥ is simple:
r < 1. Substituting from (II.14) to the equation of the cone, we get:
r? sin’d = 312 cos?d (cos? ¢ + sin? ®),
sin®d = § cos’d,

tan 9 = +/3/3

which means that ¢ = £ /6. Since D is the region above the cone, the Y—coordinates

of its points satisfy: ¢ € (x/6, 7/2). Finally, all possible straight lines passing
through the origin sweep over D as the angle ¢ runs from 0 to 2r. Thus,

63



1 p2r pw/2
ma(D):/dezdydz:L '/B //sarz cos 9 d¥ dp dr = 3.

IIL.7.10. Generalized cylindrical coordinates in E;. We will again denote these
coordinates of the point [z,y, z] € Es by r, ¢, w. They are analogous to the cylindrical
coordinates, though their origin need not coincide with the origin O of the Cartesian
coordinates. r, ¢ represent the generalized polar coordinates of the point [z, y] in the
zy-plane and w is a linear function of z (and vice versa). Thus, the relations between
the Cartesian coordinates and the generalized cylindrical coordinates are:

z=mzg+arcosp, y=yo+brsing, z=z+cw, (I11.16)

where [zo, Y0, 2] is a chosen point in E (the origin of the generalized cylindrical
coordinates) and a, b, c are positive parameters.

Analogously to (II1.8) and (II1.13), when we transform a volume integral to the
generalized cylindrical coordinates, we must substitute for dzdydz in accordance
with the following equation:

dzdydz = aber dr dp dw. (II1.17)

(See Section I11.9 for more details.)

The transformation of a volume integral to the generalized cylindrical coordin-
ates can simplify the integral either if the domain of integration is a part of the
elliptic cylinder (z — z0)*/a® + (v — y0)?/¥* < R? or if the integrand depends on z
and y mainly through the expression (z — z0)?/a® + (y — yo)*/5*.

IIL.7.11. Generalized spherical coordinates in E;. We will denote these coordi-
nates of the point [z,y, z] € E3 in the same way as the spherical coordinates, i.e. by r,
@, w. The difference between the spherical coordinates and the generalized spherical
coordinates is that the generalized spherical coordinates need not have their origin
at the same point as the Cartesian coordinates and they are not “isotropic”. This
means that r can increase with the distance from the origin with the different rate
in the z-direction, y—direction and z-direction. The relations between the Cartesian
coordinates and the generalized spherical coordinates are:

z=x9+arcosdcosp, y=4vyp+brcosdsing, z=2z +ecrsind, (I.18)
where [z, Y0,20] is a chosen point in Ey (the origin of the generalized spherical
coordinates) and a, b, ¢ are positive parameters.

Analogously to (I11.8) and (IIL.15), when we transform a volume integral to the
generalized cylindrical coordinates, we must substitute for dzdydz in accordance
with the following equation:

dzdydz = aber?® cos ¢ drdyp dw. (I11.19)

(See Section II1.9 for more details.) :

The transformation of a volume integral to the generalized spherical coordinates
usually simplifies the integral either if the domain of integration is the ellipsoid (z —
20)?/a® + (y —yo)? /6% + (2 — 2z0)? /e < R? (or its sector) or if the integrand depends
on z, y and z mainly through the expression (z —z9)?/a® + (y —yo)?/b* + (2 — z0) /.
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IIL.8. Some“physical applications of the volume integral.

Suppose that a three—dimensional body has the form of a measurable set D in
E;. The body need not be homogeneous and so its density (amount of mass per
unit of volume) need not be constant. Let the density be given by function p(z,y, 2).
The volume integral enables us to define and evaluate some fundamental mechanical
characteristics of the body. Suppose that p is expressed in [kg - m™]. Then we have:

Mass M = /jj p(.';,",y, z},‘d.‘z,dy‘t.iz [kg],
D ' .
Static moment about the xy-plane M., = //:/ z-p(z,y,2z) dzdydz [kg-m),
D
Static moment éboixt the a:z—'plane: M,, = fff y-p(z,y,2) dedydz  [kg-m],
D

Static moment about tl.m. yz-plane My, = //j z-p(z,y,2z) dedydz  [kg-m],
D

Center of mass [Zm, Ym,zm] Tm = —A—Jﬁi, Ym = Aj;’, = Jl;f;, [m],

Zm =
Moment of inertia about the z—axis J, = / / /;) (v*+7*) p(z,y, 2) dz &y dz [kg-m?],
Moment of inertia about the y—axis J, = [ j D(:r2+z_2:) p(;:;y, 2) da: dydz [kg-m?),
M.oment of inertia about the z—axis J, = /:/ D(z“-}-y’) oz, y,2) dz dy dzl [kg -m?],
Moment of inertia about the origin Jy = / fD (m’ +y2 +27) p(x, 3}, z) dz dydz kg - m?).

Try to suggest the formula for the moment of inertia about a .general straight
line in E3 whose parametric equations are z = zp + uit, y = yp + ugt z = zp + ust;
teR! .

ol

IIL9. A remark to the method of substitution in the double and volume
mtegra] i

The idea of the method of ‘subst".i.tution is the same in the double and in the
volume integral. This is why we shall treat it together for both types of integrals in
this section. Thus,

— E; will mean either E; (if K =2) or Ej (if k¥ = 3),

- the integral [ will mean either [f (if k=2) or [[[ (if k = 3),

- point X € E; will denote either [z1,2;] (if k = 2) or [z1,22,2s], (if k = 3)
and
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— dX will denote either dz;dzy (if k=2) or dz;dwsdzs (if k= 3).

We already know some widely used substitutions — they are given by equa-
tions (IIL.4), (IILT), (I1IL12), (111.14), (IIL.16) and (II1.18) and they are c.;a.!led the
transformation to the polar (or generalized polar) coordinates, transformation to the
cylindrical coordinates, etc. We will explain the method of substitution on a general
level in this section. :

Suppose that D C Eg (k = 2 or k = 3) and we have to evaluate the inﬁ;egra.]
Jp f(X) dX. If every point X € D can be expressed as X = F(Y') where points ¥’
are taken from some other set D' C Ej then the integral can be transformed to the
integral in the variables ¥ on the domain of integration D'. However, it is clear that
this can be done only if both the integrals on D and D' exist and mapping F has
certain properties. We will discuss them in the following. o

I11.9.1. Regular mapping and its Jacobian. Let D and D' be domains in Ej.
Suppose that F is a mapping of D' to D. Equation X = F(Y) means
1 = di(y1,¥2), 2= ¢a(yr,y2) for k=2,
21 = ¢1(y1, ¥z, ¥3)y T2 = ba(y1,¥2,¥8), T3 = da(y1,v2,53)  for k=3

The determinant

, d¢;
JF(Y) = ;%(Y)L,j:],z (fork=2) or Jr(Y)= aj,- (}’)“_Fl’:‘3 (for k = 3)

is called the Jacobian or the Jacobi determinant of mapping F.

Mapping F is called regular if functions ¢; (i = 1,20ri = 1,2, 3) have continuous
partial derivatives in set D' and J#(Y) # 0 in all points Y € D'

1IL9.2. A one-to—one mapping. You already know the notion of a one-to-one
mapping. Mapping F is called one-to-one if
Y, ZeD, Y#Z = F(Y)#F(2).

II1.9.3. Example. Verify that the mapping given by equations (IIL.4) is a one-to—
one regular mapping of the open rectangle D' = {[r,¢] € Ea; 7 €(0,2), ¢ € (0,2m)}
onto the domain D = {[z1,z2] € Eg; 22 +23 < 4} —{[z1,72] € E3; 1 € (0,1), T3 =
0} (D is an open disk (with its center at the origin and radius 2) minus the line
segment connecting the points O = [0,0] and P = [2,0]. Sketch a figure!

The one—to—one correspondence between the points [z1,22] € D and [r,¢] € D'
is obvious. To verify the regularity of mapping (IIL.4), let us evaluate the Jacobian
of this'mapping. Equations (IIL.4) can also be writien as

71 = ¢i(r,p) = rcosp, 2 = ¢a(r,p) = rsingp.

The Jacobian is:

on ok
r' dp | |cosy, —rsing|

Iine) = Op2 94 " |sing, rcose o
ar’ B¢
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Now it is seen that functions ¢; and ¢, have continuous partial derivatives in domain
D' and r # 0 in D'. Thus, mapping (IIL.4) is regular in D’.

I11.9.4. Theorem. Let X = F(Y) be a one-to-one regular mapping of domain
D' € E} onto domain D € Ei. Then

[rxax = [ sEwy-usway, (11.20)
D D!
if both integrals exist.

I11.9.5. Remark. We already know that adding (or subtracting) a set of measure
zero to the domain of integration does not influence the existence or the value of the
integral. This enables us to generalize Theorem II1.9.4:

If the assumptions of Theorem II1.9.4 are satisfled and A, respectively A', are
sets in By which differ from D, respectively D', only in sets of measure zero (i.e.
mi((A—D)U(D - A)) = m((A' — D')U (D' — A")) =0) then

f f(X)dX = f F(F) - |T=(Y)] dY, (111.21)
A A’

if both integrals exist.

It is seen from equations (II1.20) and (IIL.21) that dX in the integral on the
left-hand side changes to |J#(Y){ dY in the integral on the right-hand side. We have
already shown that if k = 2 and ¥ = [r, ¢] represents the polar coordinates then the
Jacobian is equal to r (see example II1.9.3). Thus, the equation

dX = |JF(Y)| dY (1m1.22)

implies, as a special case, equation (III.5). Computing the Jacobians of mappings
(IIL.7), (IIL12), (III.14), (IIL.16) and (III.18), we can see that general equation (II1.22)
also implies special equations (II1.8), (IIL.13), (II1.15), (II1.17) and (II1.19).

II1.10. Exercises.

1. Do the following integrals exist?
dz dy
———; D={(0,1 0,1
Jf s b= xon
sin(z? + ¢?)

— 97 . D= L2
_/:/;J 22+ 32 dzdy; D= {[z,y] € Ey; z* +y* <9}

z
[ wi et D= (el €By 44 <9)
dz dy :
= D is the square PQRS where P =[1,2], Q@ = [3,2], R=[3,4],
p(1-zy) §=1,4]

z?2 y? 23 s gyl g8
jfjj;\/l—4 - % - = dedyds; D_{[a:,y,z]EEs, T+?+E<1}
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]f/ VAT + 2 dzdydz; D ={[a,y,2] € Ey; w? +3* + 2 < 0}
D

2. TFind the area of the region R in the zy—plane enclosed by the curves

a) y=2z+4, y=4-2°

¢) y=412, y=12% y=4 d) y¥*=4+z, 2+3y=0

f) 224y =2z, 2?4y =4z, y =7,
y=0

b) zy=1, y=2, =4
¢ y=lnz, z-y=1, y=-1

3. Find the area of the region in zy-plane bounded on the right by the parabola
y = z?, on the left by the line z 4y =2, and above by the line y =4.

4. Find the volume of set R in Eg if

a) R is the region under the paraboloid z = z? +y?, above the triangle enclosed
by the lines y =2, 2 =0, 4y =2, in the zy-plane

b) R is the region under the parabolic cylinder z = z*, above the domain enclosed
by the parabola y =6 — z? and the line y =z, in the zy-plane

c) Risthe region in the half-space z > 0 bounded by the surfaces z? +y?—2? = 0,
z=6—2% -7

d) R is the regmn in the half-space z > 0 bounded by the surfaces az = 2% 4 32,
22 +y? + 2% =242, (a>0)

e) R is the region bounded by the surfaces y* = 4a® — 3az, y*® = az, z = h,
z=—h, (a>0, h>0)

f) Ris the region bounded by the surfaces z?+y? =2, 22 +y? =22, 2 =0

5. Evaluate the following integrals.

a) / (14 ) dzdy; D is the region in E, enclosed by the lines y = z? —4,
y=—3z

_dzdy _
b) jj G D=3 x(2)

c) / f zy dzdy; D is the region in E; enclosed by the line y =z —4 and by the
D parabola y? =2z

o [ff@+v+a dads

e) fff z drdydz; V is the region in E3 bounded by the surfaces z =0, y =0,
v 2=0, y=2, z+z=1

f) / f / zy?2® dedydz; V is the region in E; bounded by the surfaces z = zy,
L2 y=z, =1, z2=0

V =(0,1) x (0,2) x (0,3)

g) /f/ ey’ zdedydz; V={[¢)y,z] €Bs; 0<2<1,0<y<z 0<2z<zy)
v
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h) ///ycos(:t+z) dzdydz; V is the region in E; bounded by the surfaces
v yz\/Ea y=0, z=0, I+Z=ﬂ'/2

i) f/ V1-2? -yt dedy; D= {[z,y) € Eg; 2* +* <1}

b (3 + 7 y=2:r: and by the circles 22 +y? = 4z, 2% +y? =8¢

k) ffyd:ndy; D is the upper half of the disk (z —a)? +y% < a? (a>0)

#
/j z dzdy; D is the sector of the disk z* +y? < a }2 consisting of the points
[z,y] such that = >0 and —:cS\/_ygl

m) f/j Va? + 92 + 22 dedydz; V is the ball e +yt+22 <d?, (a>0)
v .

n) f f / (z+y+2)?dzdydz; D is the region in the half-space z >0 bounded
. by the para.bolmd z=1(z*+y?) and by the
sphere 22 + y2 + 22 —-3

o) jjj zdzdydz; V is the region in E bounded by the surfa.ces Zl= \/:ﬁ + y?

and z=1

P) /jf (z* +y*) dzdydz; Dis the region in E; bounded by the surfaces
22 +y? =22 and 2=2

qQ) j/[ = ta +——) dzdydz; V is the interior of the ellipsoid

2?fa® + [P + 22/ =1, (a>0,

b>0, c>0)
6. Find the center of mass of the homogeneous regions in E; bounded by the curves
a) y=sinz, y=0; z € (0,x), b) 22 +y? =a? y=0; (y>0, a>0),
¢) y? = az, z=0, v=a; (y>0,a>0), d)y*=4dz+4, y*=-2z+4.

7. Evaluate the moment of inertia with respect to the z-axis of the homogeneous
region in E;, bounded by the lines y =2/2, y=a, z =4 (a >0). (The density
is p=1.) .

8. Evaluate the mass of the body in E; bounded by the surfaces

a) 2=0,z=a,y=0,y=b2=0,z=c(a>0, b>0, ¢ > 0) if the density is
P@,,2) =2 +y + 1,

b) 2z+z—2a,z+z—a,y —az,y—O(fory>0) if a > 0 and the density is
p(:c,y,z)—y,

c) z? +y? + 2% = a?, :t:’+y2+z’I“I—-"ic‘t2 (a > 0) if the density is p(z,y,2) =

2/y/22 +y2? + 22,
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IV. Line Integrals

IV.1. Simple curves.

We need to specify exactly what we understand under the notion of a curve (1.e.
a line) before we begin to deal with line integrals, A variety of definitions of many
types of curves appear in literature. We will restrict ourselves to two types of curves:
so called simple smooth curves and simple piecewise-smooth curves. They are also
called simple regular or simple piecewise-regular curves.

The idea of theldgaﬁl‘ﬁtion of a simple smooth curve is the following: Imagine that
a mass point moves in E; or in B in a time interval {a, b) and its position at time t is
P(t). Then P is a mapping of the interval {a, b} to By (with k = 2 or k = 3). Suppose
that the velocity of the moving mass point is continuous, bounded and different from
zero in all times t € (4, b). (This means that mapping P has a continuous, bounded
and non-zero derivative at all points ¢ € (a,b)). Suppose further that the mass point
cannot be at the same place at two different times, with a possible exception when the
motion starts and finishes at the same point. (This means that mapping P is one-to-
one in the interval (a, b) with a possible exception when P(a) = P(b).) Then the path
travelled by the mass point is called a simple smooth curve. The position function
P is called the parametrization of the curve. You will find the precise definition of a
simple smooth curve in paragraph IV.1.1.

Since P(t) (for fixed t) is a point in E; (where k = 2 or k = 3), it has two or
three coordinates. Let us denote them ¢(t), 9(t), respectively ¢(t), ¢(t), 9(2). Then
#, 1, respectively ¢, ¥, ¥, are the functions of one variable ¢ defined in the interval
{a,b). They will be called the coordinate functions of mapping P and we will write

P(t) = [g(£),%(1)] if k=2,
P(t) = [p(1),4(1),9(t)] if k=3,

The derivative of P with respect to the parameter will be denoted by the dot, in
accordance with the customs in physics. We will take the derivative for a vector and
we will therefore enclose its components in parentheses:

P(t) = ($(£),$(2)) i ks
P(t) = (qb(ﬂ,t‘b(t),??(i)) if &= 3.

The coordinate functions of parametrization P are also often denoted by z(t),
y(), respectively by z(%), y(¢), z(t).

IV.1.1. Simple smooth curve. Let P be a continuous mapping of a closed bounded
interval {a,b) to Ex (where k = 2 or k = 3). Suppose that

a) mapping P is one-to—one in the interval {(a,b}) with a possible exception when
Pla) = P, |
b) P has a bounded, continuous and non-zero derivative P in the interval (e, b).
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Then the set C'={X = P(t) € Ey; t € (q,b}} is called a simple smooth curve in
Ej. Mapping P is called the parametrization of curve C'

The simple smooth curve C is called closed if P(a) = P(b).

The vector P(t) is tangent to the simple smooth curve C' at every “interior” point
P(t) of curve C (i.e. point P(t) corresponding to ¢ € (a,b)). The vector P(t)/|P()|
is also tangent to C at point P(t) and moreover, its length is equal to one. We can
choose the orientation of curve C so that we put the unit tangent vector 7 to C at
point P(t)

i 7= —P(t) or al a
either 7= |P(t)| (for all t € (a,b)) (Iv.1)
or 7= ———}?(t) for all a,b)).

2] ( t€(a,0)) (Iv.2)

We say that curve C is oriented in accordance with its perametrization P if the unit
tangent vector 7 to C is given by formula (IV.1).

In other words, we say that simple smooth curve C is oriented in accordance

- with its parametrization P if the parametrization defines the motion along C in the

direction corresponding to the orientation of C.

If the simple smooth curve C is oriented in accordance with the parametrization

P then the point P(a) is called the initial point of C (we denote it 4,p. C') and the

point P(b) is called the terminal point of C (we denote it t.p. C).

If the orientation of C' is opposite to parametrization P then the position of the
initial and the terminal point of C is also opposite: i.p. C' = P(3) and £.p. C' = P(a).

A simple smooth curve € which is not closed can also be oriented so that one of
the points P(a), P(b} is chosen to be the initial point of C' and the second one to be
the terminal point of C.

Every simple smooth curve has infinitely many parametrizations. This is clear
if you take into account that every path can be travelled by infinitely many possible
motions.

IV.1.2. Example. Every line segment in E, is a simple smooth curve. For instance,
the line segment AB in B3 with A =[1,2,4] and B = [3,~1,7] can be parametrized
by the mapping
P(t)=A+t-(B-A) te(o1).

This means that the coordinate functions ¢, 1 and ¥ of parametrization P are:

T=¢(t)=1+2, y=o{t)=2-3t z=9t) =443 te(0,1).
The simple smooth curve C, identical with the line segment AB, is oriented in accor-
dance with the above parametrization if A =4.p.C and B =t.p.C.

IV.1.3. Example. The part of the parabola y = 22 + 1 between the points [1,2]
and [3, 10] (oriented from [1, 2] to [3,10]) is a simple smooth curve in E,. Its possible
parametrization is e.g. the mapping
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P oe=¢t)=t y=9)=t"+1] te(L3)

Since this parametrization defines the motion on the curve from its initial to its
terminal point, the curve is oriented in accordance with parametrization P.

IV.1.4. Example. Thearc z*+y? =9,z >0,y 2> 0, oriented from the point
[3,0] to the point [0, 3], is a simple smooth curve in Ey. Its possible parametrization,
generating the same orientation, is

z=¢(t)=3cost, y=1()=3sint; te(0,7/2).

IV.1.5. Example. The circle C : (z —3)® +¢* =4 in Ey (oriented counter-
clockwise) is a closed simple smooth curve. Its parametrization is for instance the

mapping
=¢(t)=3+2cost, y= z,f)(t) =2 sin\t; " te(0,2r).

You can easily verify that (' is oriented in accordance with this parametrization.

IV.1.6. Simple piecewise-smooth curve. Let Cf, ..., Oy be simple smooth
curves in Ey such that

a) tp.Ci =ip.Cy, £p.C2=1p.Cs, ..+, £.p.Criy =1p.Cm,

b) except for the points named in a) and except for the possibility when 7.p.C1 =
t.p.C, any two of the curves C, ..., Cp, have no more common points.

Then the set C =U%, C; is called the simple piecewise—smooth curve in Ey.

The orientation of the sim-
ple piecewise-smooth curve C is
given by the orientation of its
smooth parts C4, ..., Cm. We
put 4p. C (the initial point of C
C)=i.p.C; and t.p. C (the ter- 7
minal point of C) = t.p. Cp-

Eabadl

The curve which differs from "
a simple piecewise—smooth curve Fig. 8
C only by its orientation will be
denoted by —C.

A simple piecewise—smooth curve C is called Icloscd if &.p.C=tpC.

A simple piecewise-smooth curve in Eg (wherek=2o0r k =3)is a bounded set
in By whose k—dimensional measure my equals zero.

It is obvious that the notion of a simple piecewise-smooth curve is a generali-
zation of the notion of a simple smooth curve. Always when we will use the word
“curve” in the coming sections, we will have in mind a simple piecewise-smooth
curve. Similarly, a “closed curve” will mean a closed simple piecewise-smooth curve.
We will give more details about the curve if they are important.

T2

IV.2. The line integral of a scalar function.

A scalar function is a function whose values are scalars, i.e. in our case real
numbers. We use the name “scalar function” only in order to distinguish it from a
“yector function” which will be treated in the next sections.

IV.2.1. Physical motivation. Suppose that a spring or a wire has the form of
a simple smooth curve €' in E; (with k = 2 or k = 3). Suppose further that the
longitudinal density of the wire is p. p need not be a constant, and it is generally a
function of two variables z, y (if £ = 2) or three variables z, y, # (if & = 3). We wish
to evaluate the mass M of the wire.

The idea of evaluation of the total mass of the wire is exactly the same as the
idea of computation of the mass of a one-dimensional rod; used in’ paragraph IL.1.1.
We could explain it by means of a partition of the wire into many “short” pieces,
similarly as we divided the interval {a, b} into many “short” subintervals in paragraph
I1.1.1. However, let us use another approach — an approach based on the idea of the
partition of an interval into infinitely many “infinitely short” subintervals. This idea
was explained in Section IL7 (and we promised to come back to it). -

Thus, suppose that P is a parametrization of curve C' which is defined in the
interval {a,b). A typical “infinitely short” subinterval of (a,b) has the form (t,{+dt).
Parametrization P maps this interval to the “infinitely short” part of € with the end
points P(t) and P(t + dt). We can take this part for a line segment whose length is
ds = |P(t+dt)— P(t)| = |P(t)| dt. The mass of this segment is dM.= p(P(t))-ds =

p(P(1)) - |P(t)| dt. The total mass of the whole wire is ‘

M = f o(P(2)) !P(t)l dt.

IV.2.2. The line integral of a scalar functmn ona 51mple smoath:curve. Let
C be a simple smooth curve in E; or E; and P be its parametrization defined in the
interval (a,b). Let f be a scalar function defined on C'. We say that f is integrable
on curve C if the Riemann integral [ . F(P()) - |P(t)] dt exists. We denote this
integral by [, f ds and we call it the line integral of @ scelor function f on the
simple smooth curve C.

IV.2.3. Remark.' The integrability of function f on a simple smooth curve €' and
the line integral f af ds ‘are defined by means of a parametrization of curve C. Since
C can be parametrized in infinitely many ways, there arises the question whether the
integrability of f on curve C as well as the value of the integral [, f ds can depend
on a concrete choice of parametrization of C. The answer is NO. It can be proved
that neither the existence. nor the value of the line integral f,, f ds depends on the
concrete choice of parametrization of curve C.

IV.2.4. The line integral of a scalar function on a simple piecewise—smooth
curve, Let C be a simple piecewise—smooth curve in Ey or E; which is & union of
simple smooth curves Ci, Cg, ...} Cy (see paragraph IV.1.3). Let f be a scalar
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function defined on C. If function f is integrable on each of curves 1,0z .0y O

then we say that it is integrable on curve C and we put

/cfds = ;Lifds. (1V.5)

called the line integral of the scalar function f

The integral on the left hand side is
on the simple piecewise—smooth curve C.

The line integral of a scalar function is also often called the line integral of

the 13t kind.

Instead of [ f ds, we can also write for example [, f(z,y) ds (if C C E; and
f is a function of two variables) or fC fle,y,z) ds (if C C Eg and f is a function of
three variables). The symbal ds at the end of the integral can also be replaced e.g.
by dl, dr, etc.

1V.2.5. The length of a curve. If C' is a simple piecewise-smooth curve then the

value of the integral [ ds is called the length of curve C.
Specially, if C is a simple smooth curve and P is its parametrization defined in

the interval {a,b) then the length of curve C' is
b

(C) = f i f 1B()] dt. (1V.6)
c o

the line integral of a scalar function.
defined by means of the Riemann integral,
Let us mention only some of them:

IV.2.6. Some important properties of
Since the line integral of a scalar function is
most of its properties are quite analogous.

(Existence of the line integral.) If function f is continuous on curve C then
it is integrable on C' (i.e. the integral [ f ds exists).
b) (Linearity of the line integral.) If functions f and g are integrable on curve

'C and a € R then
f(f—{—g)ds:]fds-{-fgds,
C c (o]

La-fds=a-jcfds.

¢) If function f is integrable on curve C' and function g differs from f at most in &
finite number of points then g is also integrable on C and

Lgd.s:/cfds.

a)

dy Iffunction f is integrable on curve C' then it is also integrable on curve —C' and

f_cfds=jcfa’.s.

Assertion a) can be generalized in this way: If C is a simple piecewise-smooth
curve and f is continuous on each of its smooth parts then f is integrable on .

4

A A P e e

Assertion d) says that neither the exi
- e existence, nor the value of the line i
a scalar function depends on the orientation of the curve! S

I;ff.z.'?.' EvaJuatiop of the line integral of a scalar function. The line integral
o :Fctm? g ?I‘IL a simple smooth curve C' can be evaluated by means of a pa.ra.n%et
rization of C. Thus, if P is such a parametrization, defined i i |
function f is integrable on C then we can use the ,formu?a o e mfervl o B e

b
ds = B
L1 = [ ey b a. (v.7)
This formula follows immediately f iti ine i
MBI T e I\yfrzrgm the definition of the line integral on a simple

If C is a simple piecewise-smooth curve which is a union of simple smooth curve:
s

CI Cf'g e Cm (See pa.ragraph IV 1.6 thEI ] e 1. e .Iﬂ [} ()f
El ? ? [ i
> ) ( : ). I gral functl[)ﬂ f on curve

I\£.2.Sé Ex[grgp[}f.PC i[s the union of twoe line segments C; = OP and G; = PQ
where O = [0,0,0], P =[1,1,0] and @ = [1 i 1
s ] @ =[1,1,1]. Integrate the function flz,y,2) =

The simplest parametrizations of €| and C3 we can think of are:

C : Pi(t)=0+(PAO)t:[t:t:0]; t€<011)1
Ca: PR(t)=P+(Q-P)t=[1,1,] te(0,1).

We can easily find that Pi(t) = (1,1,0), Py(¢ :

d ; =LtV = U: Ual =
|Po(t)] = 1. Using formulas (IV.7) and {IV.zﬁ(),)We(obtairg w7 53 Rl e
z — 3y? = — 3
/C( yi+2) ds /Gl(w 3y +z)ds+L2(w—3y2+z)ds:

= 1t—3t2 " V243
]ﬂ( )\/idt+fo(t 2dt = -

IV.2.9. Example. Evaluate the line integral [ (2% +y) ds where C is the circle

2% 4+ (y — 5)% = 4. We do not speci :
=& pecify th i .
thie Tine itegral of wencalax functiOnyOn Z' .onenta.tlon of C because it does not affect

C can be parametrized e.g. by the mapping
c=¢(t)=2cost, y=¢()=5+2sint; 1€ (0,2n).
In order to use formula (IV.6), we also need to express |P(t)]:
|B(t)] = |(=2sint, 2 cos t) =2

Thus, we obtain

27
4 ;
/C(z —]—y)ds:/u (4 cos®t+5+2sint)-2dt = 207
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IV.3. Some physical applications of the line integral of a scalar function.

Suppose that a wire or a spring has the form. of a cgrve_C‘ in Ek (k=2 01;
k = 3). The wire need not be homogeneous and so its longil‘.t..ldmul c-lensxty {famc;tam
of mass per unit of length) need not be consta.jnt. ]:.Jet the d(!flSlt:y be given I.)Y unc blim
plz,y) (if k = 2) or p(z,y,2) (f k= 3). The line 1ntesrai of a HCE-L].B.I: fLTll?thD ena, gs
us to define and evaluate some fundamental mechanical characteristics of curve C.
Suppose that p is expressed in [kg - m™!]. Then we have:

1 k=2 Mass M = ];p(z,y) ds  [kg],

Static moment about the z—axis My = Ly -p(x,y) ds [kg-ml,

Static moment about the y—axis My = f z-plz,y)ds [kg-m),
c

. ) My _ M, { ]
Center of mass [Z’m,ym] T = 'ﬂ! Ym = '_J]Z_ s

Moment of inertia about the z-axis J; = /Gyz cpla,y)ds (kg - m?,
; : e
Moment of inertia about the y—axis Jy = /;'xz cp(z,y)ds  [kg - m?),

Moment of inertia about the origin Jo = f (® +y%) - plz,y)ds [kg-m?].
c

H. k=3 Mass M = /Cp(:i:,y,z) ds  [kg),

Static moment about the zy-plane Mg, = ]cz cplz,y,2) ds kg m),
Static moment about the xz-plane M. = /cy cp(zyy,2) ds kg m),
Static moment about the yz—plane My, = fcm o(z,y,2) ds  [kg-m],

M, sz _ Mf&'
Center of mass {mm,ym,zm]. G — —EA,E-, Ym = W, Zm = —M [mL

Moment of inertia about the z—axis J; = / (v + 22) - plz,y,z)ds  [kg-m?],
c
2
Moment of inertia about the y-axis Jy, = / (c* +2%) - p(z,y,2)ds  [kg-m?],
(o]
2
Moment of inertia about the z—axis J, = /(22 +y*) - p(z,y,2)ds  [kg-m?),
C

76

Moment of inertia about the origin Jy = /{:cz +3* +22) pz,y,2)ds [kg - m?].
L4 :

Try to suggest the formula for the moment of inertia about a general straight
line in E3 whose parametric equations are & = zq + u1t, ¥ = yo + ugt, z = 29 + ugt;

teR!

IV.4. The line integral of a vector function.

A vector function in a-domain D C Ej is a mapping which assigns to every
point [z,y, 2] € D a vector. We shall denote vectors and vector functions by boldface
letters, like for example u, f, etc. However, you can also use @, f, ete.

If f is a vector function in domain D then f(z,y,2) has thrée components. We
shall denote them by U(z,y,z), V(z,y,2) and W(z,y,2). U, V and W are scalar
functions in domain D. We shall write - Y

f(xa Y 2’) = (U(m,y, z), V(-Iry-z)i W(zry;z)) or Simply f= (Ua V,W)

If we denote by i, j and k the unit vectors oriented suceessively in _a_ccordém?e_ with
the z-axis, the y-axis and the z-axis, we can also write: ; ot

f(z,y,2) =U(xay7z) i+V($)y)Z)j+W($ayr2)k o f=Ui+Vj+Wk

A vector function in domain D C Ej is also often called a vector field in D. Wé;
shall say that the vector function (or the vector field) f = (T, V, W) is continuous
(respectively differentiable) in D if all its components U, V and W are co_ntinqdf;s_‘
(respectively differentiable) functions in domain D.

The denotation and the used terminology in the case of twb—dimensiona_l vector
functions is analogous, the only difference being that we have one variable ind one
component less.

IV.4.1. Physical motivation. Suppose that a body moves along a curve €' due to
the action of a force f. We wish to evaluate the work A done by force f along curve
C'. The force is generally the function of three variables z, y and z. Let us apply
the idea of an “infinitely small” positive number explained in Section II.7 and let us
imagine that curve C' can be decomposed to infinitely meny “infinitely short” parts.
A position of a typical part is [x,y, z|, its length is ds and the unit tangent vector
to C' at point [2,y,2] is 7(z,y, z). The work dA of force f done by its action on the
considered “infinitely short” part is dA = f(x,v,2) - 7(z,y,2) ds. Hence the total
work of force f along the whole curve C is

A= f £z,4,2) - #(z,¥,2) ds:
(&)

Since the product f(z,y,z)-7(z,y, z) is a scalar, the integral is the integral of a scalar
function which is already k_nown.
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IV.4.2. The line integral of a vector function. Let C' be a Hi-mplu }I‘)iecewise-
smooth curvein Ey, (where k = 2 or k = 3) and let f be a vector function (with k com-
ponents) defined on C. We say that the vector function f is integrable on curve C if
the scalar function f-7 is integrable on C' (in the sense explained in paragraphs I\./.2.2
and IV.2.4). The integral [, f-7ds is called the line integral of o vector function £
on curve € and it is usually denoted by [ f-ds.

The line integral of a vector function is also often called the line integral of the
2nd kind.

IV.4.3. Remark. The fact that the unit tangent vector 7" need not exist in all points
of a simple piecewise-smooth curve €' does not matter. The points where 7 need not
be defined are the points where the smooth parts of C' are connected anc'l the number
of these points is at most finite. The line integral of a vector function is c.icﬁned by
means of the line integral of a scalar function and we already know that this integ.ra.l
does not depend on the behaviour of the integrand at points whose number is finite.

(See paragraph I1V.2.6, part c).)

IV.4.4. Remark. The line integral of a vector function can be denoted and written
down in various ways. It is very important to understand them and to recog‘n-izc
correctly what they mean. We will explain one of the other possible ways of writing
the line integral of a vector function in this paragraph.

Suppose that a vector function f has components U, V anji W. Thus, f =
(U, V,W) =U-i+V-j+ W k. Comparing the two integrals Jof-7ds and fcf-d.s
which mean the same, we obtain the formal equality ¥ ds = ds. The term ds is
considered as an “infinitely short” tangent vector to curve ' and its components are
often denoted by dz, dy and dz. Thus, we have

7ds = ds = (da,dy,dz) = idz +jdy+kdz
The scalar product f - ds can now be expressed
f-ds = (U,V,W): (de,dy,dz) = Ude +V dy + Wdz

and the line integral of the vector function f can be written as
/f—i’ds:[f-dszj(wa+de+Wdz). (Iv.8)
¢ c c

Tt is clear that'if C is a curve in B, and f is a two—dimensional vector function
with the components U and V then

- /f-m :ff-ds:/(Ud:v+de). (IV.9)
(5] c (o] .

IV.4.5. Example. Using the notation explained in the previous paragraph, you
can observe that the integral [,(22® +3y) dz is in fact the line integral of a vector
function (0, 0, 2z* + 3y):

/(2x2+3y)dz= f0~dm+0-dy+(2m2+3y)dz e L(0,0,212+3y)-d$.
c c 7
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IV.4.6. Remark. The line integral of vector function f is defined by means of
the line integral of the scalar function f:7 and so the main properties of the line
integral of a vector function are the same as the properties of the line integral of a
scalar function. Thus, we can simply rewrite items a), b) and ¢) of paragraph IV.2.6
with the function f-7 and we obtain valid assertions for the line integral of a vector
function. (Do it for yourself!)

The main and very important difference between the line integral of a scalar
function and the line integral of a vector function is that the line integral of a vector
function depends on the orientation of the curve. More precisely:

IV.4.7. Theorem. If a vector function f is integrable on curve C then it is also

integrable on curve —C' and
f f-ds:—/fvds.
-C o]

This theorem follows immediately from the definition of the line integral of a
vector function. The integral [, f-ds is equal to the integral Jof-7ds where 7 is
the unit tangent vector, It shows the direction given by the orientation of the curve.
If we change the orientation then the unit tangent vector changes its sign and this
leads to the change of sign of the integral.

IV.4.8. Evaluation of the line integral of a vector function. The line integral
of a vector function f on a simple smooth curve C can be evaluated by means of
a parametrization of C. Suppose that P is such a parametrization, defined in the
interval (a, b). Suppose further that curve C is oriented in accordance with paramet-
rization P. Then the unit tangent vector in every “interior” point of curve ¢ can be
expressed as 7 = P(t)/|P(t)|. Now using the definition of the line integral of the
vector function f and formula (IV.7), we obtain

il i Pods = ’ f@_ ;
fc Pt L # Pl / (P 5 1B d
jfvds = /bf(P(t))-P(t) dt. (1v.10)
c a

S'ubstituting here f= (U, V,W), P(t) = [qﬁ(t), W(t), 19(1‘-)] and P(t) — (qﬁ(t), T/;(f),
ﬂ(t}), we get:

/Cf. ds = f’ [T () + V 4(t) + W I(2)] dt (Iv.11)

where U = U(g(t), ¥(t), 9(t)), V = V(g(2), ¥(t), (£)) and W = W (4(2), (1),
#(t)). Formula (IV.11) can also be formally obtained from (IV.8) if we use the substi-
tution z = ¢(t), y =4(t), z=19(t) and do = §(t) dt, dy =(t)dt, dz =(¢) dt.

If curve C is not oriented in accordance with parametrization P (i.e. P generates

the opposite orientation of ') then formula (IV.11) holds with the sign “—” in front
of the integral on the right hand side.
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The line integral of a vector function on a simple piecewise-smooth curve C'
which is a union of the simple smooth curves C1, Cy, ..., Cyn (8ee paragraph IV.1.6
for details) can be evaluated in such a way that we first compute the integral on each
smooth part C;, Ca, ..., Cp of curve C' (e.g. by means of the parametrization of
these parts) and then we use the fact that the integral on C is equal to the sum of
the integrals on C4, C2, ..., Cm.

Finally, the line integral of a vector function can also be sometimes evaluated by
means of the Green theorem, the Stokes theorem or formula (VL.1). (You will find
the details in paragraphs IV.5.5., V.6.6 and VL.1.5.)

IV.4.9. Example. Find the work done by the forece f(z,y,2) = (y — 2®)i+
(z—y*)j+(z—2*)k overthecurve C: P(t)=[t, %, t°]; ¢€ (0,1} from [0,0,0]
to [1,1,1).

Curve C is defined by means of its parametrization P. Since [0,0,0] =i.p.C =
P(0) and [1,1,1] = t.p. C = P(1), C is oriented in accordance with parametrization
P. We can easily find that P(t) = (1, 2¢, 3t*). Using formula (IV.10), we obtain

; o 1 ey 4
f,f-ds:f(y—z‘*’,z—yz,z—zz).-ds=/ (0,#2 -4, ¢ =) - (1, 2¢, 3*) dt =
c c o
1
:/D [2t4f2t5+3t3—3t8j dt = [26° -2 4 340 30 = 22,

IV.4.10. Circulation of a vector field around a closed curve. Let C be a
closed curve in Ej or in E; and let f be a vector field (= a vector function) defined
on C. The line integral [, f-ds is called the circulation of f around curve C. In
order to stress the fact that C is & closed curve, the integral is also often denoted as

§of-ds.
IV.5. Green’s theorem.

This section deals with the line integral of a vector function on a closed curve
in Eg. The vector function is also supposed to be two—dimensional (i.e. to have two
components).

The next theorem says something that is very obvious at first sight. We do not
give the proof of the theorem. Nevertheless, if you were to see the proof, you would
be surprised that it is not easy. {

Bear in mind the convention that if nothing else is specified then “curve” de-
notes a simple piecewise-smooth curve and “closed curve” denotes a closed simple
piecewise—smooth curve. (See paragraph IV.1.6.)

1V.5.1. Jordan’s theorem. Let C be a closed curve in By. Then there exist two
disjoint domains Gy and G in Ey such that C is their common boundary and

a) Ey=GUCUG,,
b} one of the domains G, Gy is bounded and the second one is unbounded.
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IV.5.2. Interior an’d_ exterior of a y 2 b

closed curve in E;. Let C be a clo- Yy %

sed curve in E; and G1, Gy be the do- C

mains whose existence is given by Jor-

dan’s theorem. That domain of Gy, G4 / Int C
N

which is bounded is called the interior of ¥
curve C' and it is'denoted by Int C'. The e
second domain, which is unbounded, is g

called the ezterior of C' and it is denoted Fig. 9

by EztC.

1V.5.3. Positive and negative orientation of a closed curve in E,;. Let C
bela closed curve in E,. We say that C is oriented positively if, when moving on '
in accordance with its griénté.iio;i, we have its interior on our left—hand side. (See
Fig.9.) In the opposite case, i.e. in the case when the interior of C is on our right—
hand side when moving along C' in accordance with its orientation, we say that C is
oriented negatively.

IV.5.4. Remark. Definition IV.5.3 is very simple and you can easily imagine what it
says, because you know where you have your left hand and your right hand. However,
you can also observe that this definition is not correct from a purely logical point of
view. Why not? — It is clear: Mathematical notions must be defined precisely and
must not depend on our knowledge of where we have .our left hand -and. our right
hand, In other words: How would you explain the above definition to an intelligent
being (for example an extra—terrestrial) who does not have two hands and is not used
to distinguishing between “left” and “right”? o

Since the logically correct definition of the pdsﬁitiyé‘(respe'ctix%ely'riegati've) orien-
tation of a closed curve in E; is not so easy and the above (not quite’¢orrect) definition
is satisfactory for our purposes, we do not show the correct definiition in this'text.

IV.5.5. Green’s theorem. Suppose that

DCEg 7" A
b) C is a positively oriented closed curve in D such that Int C C D.

i ke @ fleg - ; av  ou :
Th f.ds = - .
en }i s f/m C(ax By) dedy. . (1v.11)

IV.5.6. Remark. LT'sin:g the for‘ma,.l‘equaiity f-ds=Udz +Vdy asin (IV.8), we
can write formula (IV.11) in the form

' v au
Ude +Vdy = L
j{c b Wil M } G( 5 ) dady. (Iv.12)

If all the assumptions of Green's theorem are satisfied with the exception that
curve ¢ is oriented negatively then formulas (IV.11) and (IV.12) hold with the sign
“~" in front of the integrals on the right hand sides.

a) a vector function f = (U, V') has continuous partial derivatives in domain
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IV.5.7. Example. Evaluate the circulation of the vector field f = (—a?y, zy?)
around the positively oriented circle z? 4 y? = a® (where a > 0).

If we denote the components of f by U and V then we get:

aV BU a d 2.8 .2 2

It can easily be verified that all the assumptions of Green’s theorem are satisfied and
so we obtain:

2m o
jlg —ztyde +zytdy = f/ (& +y*) dady =) (./ r dr) do = =,
c 22 4yI<a? 0 0 2

1) We have transformed the double integral to the polar coordinates.

1V.5.8. Remark. If the components U and V of vector function f are such that
8V /0xz— 08U /8y =1 then Green’ : thwrem can be used to evaluate the area of Int C.
For example, if we choose U = —1y, V = 12 and C is a closed curve in By then

K
;j( —ydztody = 1 f[ a”“ (J))d dy—-f/ dody = (IR T,
Int C y IntC

IV.6. Exercises.

1. Decide about the existence of the integral [, ds/(z* +y*) where C is the circle
with its center at point S and radius 1.

a) §=10,0] b) S =[1,0] S = [0,-2]

2. Evaluate the length of curve ' which is defined by its parametrization.

a) P(t) = [3t, 3%, 2¢%], t € (0,1}

b) P(t)=[acost,asint, bt], t€(0,2r) (a>0, b>0)

3. Evaluate the following integrals. (Which of them are are the line integrals of a

scalar function and which of them are the line integrals of a veetor function?)

d ; ;
a f 2 : C is the part of the straight line y = o —2 between the points
7

TV [0,-2] and [4,0]

b) [ y ds; C is the part of the parabola y* = 2pz between the points [0, 0] and
2 2p,2p] (» > 0)

c) / zy ds; Cis the pa.rt of the ellipse z?/a®+y?/b* =1 in the second quadrant

d) / v/2y ds; C is the part of the eycloid z=a(t —sint), y = a(l — cos £)
corresponding to ¢ € (0,27)

€) f (¢ —y) ds; C is the circle 2% +y? =2g
s

2 ;
f /j—imw?ds; C: z=acost, y=asint, z=at, t € (0,27) (a > 0)
cT Ty '
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f zyz ds;
c

C is the intersection of the surfaces a? 4 y2 + 2% = R? ‘and
22 +y? = R/4 in the first octant (R>0)

/ (z +y)ds; Cis the quarter of the circle 2% +¢% 4 22 = R%, y =1z in the
c

first octant

/ z dy; C is the triangle with its sides on the coordinate z— and y-axes and
e on the line 2/2+y/3 =1, oriented positively

] (z +y)dx; C is the line segment from [a, 0] to [0, §]
(o4

/C(w” ~y

) dz; C is the part of the parabola y==z? from [0,0] to [2,4]

/ [~ cos ydz + y sin zdy]; C is the line segment from [0, 0] to [, 2]
e

mey

f y?de — % dy
o Tty

ds; C is the ellipse x?/a® +¢?/b? = 1, oriented positively

; C is the part of the circle 2% +y* =a” (@ > 0) in the first
and in the second quadrant, oriented from [a,0] to [—e, 0]

/(2afy,fa.+y)-ds; C; z=a(t—sint), y=a(l —cost), t€(0,27); C
c

is oriented from [27a,0] to [0, 0]

[ [y% dz + 2% dy+ 2% dz]; C is the intersection of the sphere «? 432 + 22 = R?
c

with the cylindrical surface z? +y? = Rz

(R>0), 2>0; C isoriented positively as viewed from the origin O =[0,0,0]

/ [2zyi—2%j] ds; C is the union of the line segments leading from [0,0] to
fe;

(2,0] and from [2,0] to [2,1]

/{yzi+z R?—y?j+oyk]-ds; C: z=Rcost, y=Rsint, 2 =at/(27)
c

(¢ > 0), C is oriented from its intersection

with the plane z =0 to its intersection with the plane 2z =a

/(1 — ¥y dz+z(1+y*)dy; C is the boundary of the square (0,2) x (0,2)

oriented positively -

/(e“”' + 2z cos y) dz + (e — 2? sin y) dy; C is the circle 22 +1y? =8
¢

oriented positively

f{my+x+y)dm+(zy+z—y}dy, C is the ellipse 922 4 36z + 44> =0

oriented negatively

/(m +y)dz -2z dy; C is the bounda.ry of the triangle with its sides on the
e

JICTE

lines = =0,y =0, 2+ y =35, oriented negatively

dy/z); C is the boundary of the triangle with the vertices [1,1],
[2,1], [2,2], oriented positively
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x) f [2(z® +y*) i+ (z +)?3jlds; C is the boundary of the h:'*i\a.ng!e with the
c vertices [1,1], [2,2]; [1, 3], oriented positively
i LRy
4. Evaluate the work done by force f over curve C.
a) f=(z—y,z), Cisthe boundary of the square,with the vertices [—2, —2], [1,—2],
[1,1], [-2,1], oriented clockwise 0 8

b) f=(z+y,2z), Cis the circle z =a cos t,‘y:asin t,t e {0,2r)

¢) f=(y,2), Cis the closed curve which consists of the semi-axes and the quarter
of the ellipse # =2 cost, y =sint,t € {0,27) in the first quadrant

5. C, is the line segment from [0,0] to [1,1], Cy is the part of the parabola y = a?
from (0,0] to [1,1], 1 = [, (+y)* do—(z—y)? dy, I = [ (z+y)? dz—(z—y)? dy.
Applying the Green theorem, evaluate the difference oL —1I.

6. Using the line integral, evaluate the area of the interior of the closed curve which
consists of the arc of the cycloid z =-a(t —sint), y = a(l —cost), t € {0,27) and
the line segment connecting the points [0,0] and [2rg, 0].

7. Using the line integral, derive the formula for the area of the interior of the ellipse
wtfa? 4y B =1

8. Using the line integral, evaluate the area of the interior of the closed curve whose
equation in the polar coordinates is r = a(1'—'cos ¢) where a > 0 (a so called
“cardioid™). 5

9. Using the line integral, evaluate the area of the interior of a so called asteroid,
whose equation is @2/% 4 /% = a®/* (¢ > 0). (You can use its parametric equations
r=acos*t,y=asin’¢ t € (0,27).)

10. Evaluate the circulation of vector field f around the closed curve C. K it is

possible, apply the Green theorem.

a) f(z,y) = (e* siny — y?, e® cos y — 1), C=C1UCy C={[zy] €Eq z? +
v 4+2r =0, y< 0}, Cy={[g,y] €Ey; ~1 22 <0, y= 0}, C is oriented
positively. .

b) flz,y) = (z+y)i+(y—2)i, C= {[z,y] € Eq; 2*/d? +y?? =1}, Cis
oriented negatively.

Ii

¢) f(z,y) = (z2,y?), C is the perimeter of a triangle with the vertices A = [1,1],
B =[2,1], D = [2,3], oriented positively.

d) f(z,y) = (2, ~z), Cis the perimetle.r of a triangle with the vertices A = [1,1],
B =[1,3], D =[2,2], oriented negatively.
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V. Surface Integrals

V.1. Simple surf'ac'es.

We will work with two types of surfaces in Ej: so called simple smooth surfaces
and so called simple piecewise—smooth surfaces.

The idea of the definition of a simple smooth surface is the following. Imagine
that you have a subset B of E;, bounded by a clesed curve I'. You cut set B from
E;, you move it somewhere to E3 and you deform it elastically so that you do not
disturb its smoothness. This means that you can stretch it in various directions, but
your cannot break it:and you cannot paste two different points together. Thus, you
get a simple smooth surface in Es.

This can be easily expressed mathematically. The described procedure moves
every point [u,v] € B to some other point P(u,v) = (¢{u,v), ¥(u,v), #(u,v)) in Es.
Thus, P is a mapping of B to E3. The requirement that the deformation of B is
elastic and smooth leads to the condition that P (i.e. the functions ¢, 4 and ¥) is
continuous and has continuous partial derivatives in a sufficiently large subset of B.
The requirement that two different points belonging originally to B cannot be pasted
together leads to the condition that mapping P is one-to-one in B. ‘

The functions

z = ¢(u, 1’): y=9Pluv), z= 19(”:“)
are called the coordinate functions of mapping P.

We shall denote the partial derivatives of mapping P with respect to the variables
%, v by P, and P, and we shall work with them as with vectors. Hence

i i
il

Pu(uv) = (6¢(u,v) Fp(u,v) aﬁ{u,v)) sk, By = 9 8 @),

du 7 G T du ~ \Bu’ du’ Bu
_ (08w, v) OP(u,v) 89(u,v) _" 84 9% 89
Py(u,v) = ( P ) or shortly P, = (55, o %)

The vector product_pf vectors P, and P, will be denoted by ‘P., % P,. Have in
mind that : o Y

¥ 3 CEREe

Poxho= o o B (BR00 205 3 0400
L A gz g:; g:; T \Qu By Budv Budv Oudv
W B O %%ﬁé’i’ﬁ‘é)
' ou ov  Ou fv/

We describe the notion of a simple smooth surface once again, this time precisely,
in the following definition. e
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*fu.vd

Fig. 10 i

V.1.1. Simple smooth surface. Let  C Ey, P = (#,%,9) be a mapping of
to B, I' be a closed simple piecewise-smooth curve in ©, and let B = I' U IntT.

Suppose that

a) mapping P is continuous and one-to-one in B, :

b) P has continuous and bounded partial derivatives Py and P, in B — K where
K = 0 or K is a finite set of points on the boundary T' of set B,

¢) P,xP,#0 in B—K.

Then the set o = {X = P(u,v) € Eg; [u,v] € B} is called the simple sooth surface

in B;. Mapping P is called the parametrization of surface o. Theset C ={X =

P(u,v) € Eg; [u,v] €T} is called the boundary of surface o.

The boundary of a simple smooth surface is a closed simple piecewise-smocth
curve in Bs. Instead of the word boundary, you may also find the denotation “con-
tour” or “margin” in literafure. -

Every simple smooth surface has infinitely many parametrizations. (Compare
with the analogous statement about the simple smooth curve in paragraph IV.1.1.)

Our definition of a simple smooth surface is relatively straightforward. However,
this is paid for by the fact that, for instance, a “nice” surface like a sphere is not
a simple smooth surface. All attempts to modify the definition of a simple smooth
surface so that it will alse include the sphere always lead to such great complications
that they do not pay off. This is a consequence of the geometrical structure of the
three-dimensional space By — it provides such a variety of possible forms of surfa-
ces that we must be very careful in order to avoid confusion in our definitions and
theorems. However, you will see that we do not exclude spheres (and other similar
surfaces) from the class of surfaces that we will deal with — they can be treated as
so called simple piecewise-smooth surfaces, whose definition is given in paragraphs
V.1.5 and V.1.6.

'V.1.2. Orientation of a simple smooth surface. Normal vector. Let P be
a parametrization of a simple smooth surface o, defined in set B C Ej, and let
X = P(u,v) for [u,v] € B — K (see definition V.1.1). Then the vectors Py(u,v) and
P,(u,v) are tangent to o at point X and due to condition c) from definition V.1.1,
they are linearly independent. Their vector product is perpendicular to both of them,
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and so it is als? perpendicular to surface o. If we divide the vector product by its
length, we obtain a unit vector, perpendicular to ¢ at point X. )
Wte can c:ho?se the orientation of surface o in such a way that we put the
normal vector n (i.e. the vector which is perpendicular to o, its length i i
. . : th
direction shows the orientation of ¢) , g s one and s
; Py(u,v) x Py(u,v)
either n= — o
“ [Pul,0) x Py Mol € B-K V1)
Pu(u,v) x Py(u,v)
[Pulu, 0) % Polu,)

It n is g.iven by formula (V.1) then we say that the simple smooth surface o is
oriented in accordance with its parametrization P.

or n=-—

for all [u,v]€ B~ K. (V.2)

. Thuf;, the simple smooth surface & is oriented by the choice of a normal vector n
(i.e. a unit vector perpendicular to o) at any point where the perpendicular direction
to o is defined. The normal vector is oriented to the same side of ¢ at every point
where it exists. This means that it changes continuously if you move on o.

V.1.3. The relation between the
orientation of a simple smooth
surface and its boundary. We say
that boundary C' of a simple smooth
surface ¢ is oriented in accordance
with o if your left hand shows the di-
rection of the normal vector n on o
when you move on C in the sense of
its orientation. (See Fig.11.)

Fig. 11

1t is obvious that this definition is not logically quite correct (for the same reasons

mt 11 n . ). NBVeIt}leleSS it is mstructive, sir e and 1t canno’
as € case O lleﬁ t10; I V 3 I &
3 ) 1 C

Fig. 12

V.1.4. Exa;npge. Surface o is a part of the cone z = 1/2% + 2, corresponding to
@ 2 0and z°+y* < 4.1t is oriented “upwards”, i.e. the third component of the normal

87



tor is positive. Show that o is a simple smooth surface, find its parm.neb%'izatlonci
\éec_gr whpether o is or is not oriented in accordance with your pa.rmnetnza.tlon, a'I:h
degnee the orientation of the boundary of ¢ so that it is oriented in accordance wi
e

the orientation of .
i = /2] z.
In order to parametrize o, we can use the equation z = z% 4+ y%: We can put

P z=¢(wv)=u, y=p(uv)=v, z=30uv)= Vu? 4 v?
for [u,v] € B where set B is defined by means of the conditions u > 0 and u?+v? < 4:
or [u,
B = {[u,v] € By u 20, u® +v* <4}.

It be verified that mapping P has all the properties.which are requ.ired' in dfeﬁn

nit?gg V.1.1, and so o is a simple smooth surface and P is the parametrization of o.
1.1,

The partial derivatives P, and P, are

P = (1,0, ﬁ“ﬂlﬁ) Pu(w,v) = (0, 1, m\/z%ﬁ)

their vector product is

U v
_(_ - i
PuXPU_( 'u.2+U2‘ u? 4 v?2 )

and the length of this vector product is V2. Tl.ms-, the unit vefgorth%dxcf; / |f§e>:ltP;1‘
erpendicular to ¢ equals Py x P,,/ﬁ a.nld it 18 seen that e1 1t x ;:)nd s
It)his vector is positive. Hence it coincides with thel given norma. \ge.c og_cn P
can say that surface o is oriented in accordance with our parametrizati . )
The orientation of the boundary C of & w‘hich corresponds to gle :rtﬁnta (;ic::;
of ¢ is marked in Fig.12. For example, the unit tangent vector to C at the p

X =[2,0,2)is ¥ = (0,1,0).

i i ise— face consisting of two simple
.1.5. A simple piecewise—smooth sur : ;
:mooth surfaI::es. Suppose that oy and o2 are two oriented simple sm.ooth surfg,ces
whose boundaries ¢ and C, are either both oriented in accordance with oy and o2
or they are both oriented opposite to o1 and o3. Suppose that

Fig. 13

a) o1 Noz =CyNC, and this set forms a simple piecewise-smooth curve or more
: e
(a finite number of) such curves,
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7 b) the orientation of ¢, and C, is opposite in all points of Cy N Cy. (See Fig. 13.)

Then the union o = o4 U, is called a simple piecewise-smooth surface in By, consis-
ting of two simple smooth surfaces o; and a3.

" The orientation of o is given by the érienfation of o1 and oy.

The boundary of o is the closure of the set (C1UC,)—(C1NCY). (See Fig. 1300t
is either empty, or it is one simple piecewise-smooth curve (see Fig. 13), or it consists
of more (a finite number of) simple piecewise—smooth curves.

V.1.6. A simple piecewise—smooth surface consisting of more simple

smooth surfaces. Let o; and a2 be the simple smooth surfaces from the previous
paragraph. If we successively, respecting the same rules, connect other simple smooth
surfaces 03, 0y, ..., o, to the union o U g3, we obtain a simple piecewise-smooth
surface in By which consists of m simple smooth surfaces a4, o5, . .. » O (See Fig. 14.)

The surface which differs from a simple piecewise-smooth surface o only by its
orientation will be denoted by —a. '

V.1.7. A closed simple piecewise— smooth surface., A simple piecewise ~smooth
surface & whose boundary is the empty set is called closed.

V.1.8. Example. A surface which consists of two simple smooth surfaces oyt
22+ (y+1)72 =2 ¥y 20 and oy : -ﬂ:r‘?—l—(y—l)2 =2y £0 is a closed simple
piecewise-smooth surface,

Other exampiles of closed simple piecewise-smooth surfaces are: :t_hé surface of
a cube, a sphere, an ellipsoid, ete. o

Similarly as in the case of curves, we can make an agreement that whenever
we will use the word “surface”, we will mean a simple piecewise-smooth surface. A
“closed surface” will mean a closed simple piecewise—smooth surface. More details
about the surfaces will be specified if they are important and necessary,
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V.2. The surface integral of a scalar function.

V.2.1. Physical motivation. Suppose that a desk has the form of.u. simp]t? smbot_h
surface o in Es and its surface density (i.e. amount of mass per unit area) is p. p 18
generally a function of three variables z, y, z. We wish to evaluate the total mass M
of the desk. )

Suppose that P is a parametrization of o which i.s de'ﬁned in se,”s B C E,.
Imagine that B can be decomposed to infinitely many “infinitely small” squares of
the form (u,u+ du) x {v,v+ dv). P maps each of these squz?:r.'es t? the part :;f o
Since the square {u,u + du) x (v,v +dv) is supposed to be “infinitely small”, its
i on ¢ can be taken for an
tﬁ.niaieP(u,v), Ay = P(u +du,v) = P(q,v) + Py(u,v) du, Az = P(u+du,v+ dv)d=
P(u, )+ Pu(u,v) - du+ Py(u,v) - dv and Ag = P(u,v + dv) = P(g, v) 4+ Py(u,v) - vd:
(See Fig. 15.) Its area is dp = | Az — Ayl |As — Ay] - sin a and this can be expressed
as dp = |(Az — A1) x (As — A1)|. Substituting here for points 41, Az, 4a, we obtain:
dp = | Pu(u,v) % Py(u,v)| dudv. The mass of the parallelogram A; Az A3 Ay is dM =k
o(A)-dp = p(P(u,v) |Pulu,v) x P,(u,v)| dudv and the total mass of the whole des
(surface) o is

M= [fa p(P(u,v)) - |Pulte, v) x Py(u,v)| du dv.

AV 4..‘»«& _____ i
s, S A TN
T - : 3
widv i 8 Ay |
# ; Ay A _/
R . - —
I T 7
' Fig. 15 | ©

V.2.2. The surface integral of a scalar function on a simple s-mooth sur'face.
Let ¢ be a simple smooth surface in E3 and P be its pa.ramet-riz‘atlon defined in set
B C E;. Let f be a scalar function defined on ¢. We say that f is mteg?ﬂa.ble on surface
o if the double integral [[ f(P(u,v))- | P (t, 0) % Pu(y,u)l dudv exists. We d"anote
this integral by [ f dp and we call it the surfece sntegral of a scalar function f
on the simple smooth surface o.

V.2.3. Remark. The integrability of function f on a simple sn:mot‘h surface o and
the surface integral | f , [ dp are defined by means of a paxjametnzatlon of surface a.
However, analogously to the line integral of a scalar function (see renr'lark Iv.2.3), it
can be proved that neither the existence nor the va.h-le o‘_f the surface integral

[f, f dp depends on the concrete choice of parametrization of surface o.

a0

“infinitely small” parallelogram with the vertices

V.2.4. The surface integral of a scalar function on a simple piecewise—
smooth surface. Let o be a simple piecewise—smooth surface in E; which is a
union of simple smooth surfaces oy, 03, ..., om (see paragraphs V.1.5 and V.1.6).
Let f be a scalar function defined on ¢. If function f is integrable on each of surfaces
&1, 03,y .., Om then we say that it is integrable on surface ¢ and we put

/jyfdp:ijfmfdp. (V.3)

The integral on the left hand side is called the surface integral of the scalar function
f on the simple piecewise-smooth surface o.

The surface integral of a scalar function is also often called the surface integral of
the 1st kind.

Instead of [f, f dp, we can also write for example [J| f(z,y,z) dp.

V.2.5. The area of a surface. If ¢ is a simple piecewise-smooth surface, then the
value of the integral [f dp is called the grea of surface o.

Specifically, if o is a simple smooth surface and P is its parametrization defined
in set B C E; then the area of surface ¢ is

Bl e f/ dp = ffam(u,u)‘xP,,(u,v);dudv. (V)

V.2.6. Some important properties of the surface integral of a scalar func-
tion. Since the surface integral of a scalar function is defined by means of the
double integral, its basic properties are the same as the corresponding properties of
the double integral. Let us mention only some of them:

a) (Existence of the surface integral.) If function f is continuous on surface
o then it is integrable on'c (i.e. the integral [[ fdp exists).

b) (Linearity of the surface integral.) If functions f and g are integrable on
surface o and o € R then

[ roa= ]]ﬂfdp+f]ﬂg_dp:
//aa-fdp=a~/lfdp-

¢) Iffunction f is integrable on surface ¢ and function ¢ differs from f at most in
a finite number of points or curves then g is also integrable on ¢ and

[ ffrs

d) If function f is integrable on surface ¢ then it is also integrable on surface —o

and )
Lro=fro
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Assertion a) can be generalized in this way: If o is a simple piecewise-smooth
surface and f Is continuous on each of its smooth parts then f is integrable on o.

Assertion d) says that neither the existence nor the value of the surface
integral of & scalar function depends on the orientation of the surface.

v.2.7. Evaluation of the surface integral of a scalar function. The surface
integral of function f on a simple smooth surface o can be evaluated by means of a
parametrization of o. Thus, if P is such a parametrization, defined in set B C o,
and function f is integrable on o then we can use the formula

ﬂ;fdp = f[B F(P(u,v)) - lPu(u,Q) x Py(u,v)| du dv. (V.5)

This formula follows immediately from the definition of the surface integral on a
simple smooth surface — see paragraph V.2.2.

If o is a simple piecewise-smooth surface which is a union of simple smooth
surfaces o1, 02, -+ ., Om (see paragraphs V.1.5 and V.1.6) then the surface integral of
function f on surface o can be computed by means of formula (V.3).

V.2.8. Example. Integrate the function fla,y,2) = ¢+ 2y over the the surface
c:24+y+z=1,2z20,y20,2=0

Surface ¢ can be parametrized by the mapping
Pluyw): z=wu, y=v, z=l-u—v; [u,v] € B

where B = {[u,v] €Ey; 0<€u <1, 05 v s 1—u}. We can find that P, =
(1,0, -1), P, =(0,1,-1), PuxPy=(1,1,1) and |Py % P,| = /3. Using formula
(V.5), we get

//E(sz) e ffB(quzu)ﬁdudu = ﬁfolfﬂl_u(wzv) ddu=
» \/5]01(171;)@ = Vi/2.

V.2.9. Example. Integrate the function g¢(z,y,2) = zyz over the surface of the
cube cus from the first octant by the planes s =1,y =1 and z = L.

The cube can also be expressed as the Cartesian product (0,1) x{0,1) x(0,1).
Tts surface has six sides. Since zyz =0 on the three sides that lie in the coordinate
planes, the integral over the surface of the cube is equal to

f wyzdp—}-/ zyzdp+] zyz dp
a1 o3 " oy

where oy is the square region z = 1,0 <y < 1,0 < z £ 1, gy is the square region
y:1,Ogo:S1,[}Sz51a.nda3isthesquareregionz=1,051:§1,0.:_§y§1.
oy can be naturally parametrized by the mapping

Plu,v): =1, y=u, z=0; [u,0] € B = (0,1) x {0,1).
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1t is obvious that P, = (0,1,0), P, =(0,0,1), Pyx.P, =(1,0,0) and |P, x P,
; t 14Uy Dy Uy L)y Ly v =4, U, u v =L
Using formula (V.5), we obtain ( ' ] l

1 p1
ff a:yzdp-—-//uvdudv:;—.
oy 0 0

Due to the symmetry, the integrals over o3 and o3 are also ;. Hence, the integral
over the surface of the cube is equal to %.

V.2.10. Example. Although the sphere op: 22+ ¢% +2* = R* is not a simple
smfmth surface, there exists a mapping P of a closed set B C E; onto the sphere
which has all the properties of a parametrization (see paragraph V.1.1) with one
exception: it is not one-to-one on the whole set B. (It is one~to—one in the interior
of B, but not on the boundary. of B.) Mapping P is defined by the equations

- &= d(u,v) = R cos u cos v,
y =(u,v) = R sin u cos v,
z=19(u,v) =Rsinv

for w € (0,27}, v € { —7/2,7/2). (You can observe that the background of P is the
e}.cpression of the coordinates of the points of sphere oz in the spherical coordinates.)
Since P fail to satisfy all the requirements on the parametrization only on the se:t
of two-dimensional measure zero (the boundary of B) and it is already known that
the behaviour of integrands on sets of two-dimensional measure zero does not affect
double or surface integrals, P can be used in the evaluation of the surface integral
on sphere op in the same way as if it were a parametrization. (In fact, mappin-
gs whose properties differ from the required properties of pa.ra.metrizatior;s only on
sets of two—dimensional measure zero are also often, not quite corre-ct]y called the
parametrizations.) !

Thus, if for example f(z,y,2) = o + y* then, using formuls (V.5), we obtain’

// flz,y,2) dp = //B R* cos? v |Py(u,v) % P,(u,v)| dudv,
TR
Vectors Py, Py, Py, x P, and the number |P, x P,| are:
Py(u,v) = (~R sin u cos v, R cos u cos v, 0),
Py(u,v) = (~R cos u sinv, —R sin v sin v, R cos ),
Py(u,v) % Py(u,v) = (R cos u cos?v, R? sin u cos® v, R? sin v cos v),
NPu(u,v) % By(u,v)] = R? cos v.

Substituting this to the above integral and applying Fubini’s theorem II1.3.2, we get

2 ) C £ 2w /2

g cos” v | Py(u,v) x Py(u,v)| du Fl’v = /(; (f R* cossvd'u) du = &7 R

—-7/2

V.2.11: Rerlnark. Th.c approach explained in example V.2.10 can also be used in
connection with other simple piecewise-smooth surfaces, such as ellipsoids and conic
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surfaces. If for instance o is the conic surface z%+y? = 2? corresponding to z € (0, 4)
then the mapping
P: z=¢(u,w)=ucosv, y=19(u,v)=usinv, z= Hu,v) =u

(defined for v € (0,2), v € (0,27)) has similar properties as mapping P from
example V.2.10: It satisfies all the conditions of the parametrization (see. pm‘agraph
V.1.1) with the exception that it is one-to—one only in the interior O.f its domain,
ie. in (0,27) % (0,2) and not in (0,27} x {0,2). Nevertheless, mapping P can be
used in the evaluation of the surface integral on ¢ in the same way as if it were a
parametrization of ¢.

V.3. Some physical applications of the surface integral of a scalar function.

Suppose that a desk has the form of surface ¢ in Ej. Thg desk need not be
homogeneous, and so its surface density (amount of mass per unit of a.rea') need not
be constant. Let the density be given by function p(z,y,2). The surface integral of
a scalar function can be used to define and evaluate some mechanical characteristics
of surface 0. Suppose that p is expressed in [kg - m™2]. Then we have:

Mass M = f[ p(z,y,2) dp  [kel,

Static moment about the zy—-plane Mgy = f/ z-p(z,y,z)dp  [kg- m],

Static moment about the zz—plane M,, = ff yple,y,2) dp  [kg - m],
o

Static moment about the yz-plane M. = ff z-p(z,y,2) dp [kg -m],
-2 e
Mg, M.

My, sy 2Ty

[m],

Center of mass [Zm,Ym,Zm] ZTm = Zm =

TN M
Moment of inertia about the z—axis Jp, = f/a(y2 +22) - plz,y,2)dp  [kg-m?,
Moment of inertia about the y—axis Jy = /.[r(a:2 +22) - p(z,y,2)dp kg m?,
Moment of inertia about the z—axis J; = /:/;(z” +47%). p(i‘, y,2)dp [kg-m?],
Moment of inertia about the origin Jo = f‘/;(:cz 42+ 2% p(z,y,2)dp [kg - m?].
Derive the formula for the moment of inertia about a general straight line in E3

whose parametric equations are ¢ = g + tat, ¥ = Yo +ugt, z =z +uzt; t € R
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V.4. The surface integral of a vector function.

V.4.1. Physical motivation. Suppose that ¢ is a surface in the flow of an in-
compressible fluid and we wish to express the flux of the fluid through surface o per
unit time. By “flux”, we understand the volume of the fluid that flows through the
surface. Suppose that the fluid moves with a steady velocity v(z,y,z), and n{z,y, z)
is the normal vector to ¢ at the point [z,y,2]. The flux of the fluid through an
“Infinitely small” part of surface ¢ which finds itself at [z,y, 2] and its area is dp
is v(z,y,2) - n{z,y,z) ds. Thus, the total flux through the whole surface ¢ is
f,[a. V(Iﬂ, Y, z) ) ﬂ(..".‘, Y, Z) d‘g'

The same approach can also be used if we wish to evaluate e.g. the flux of a
magnetic field through a given surface.

Let us recall that the idea of an “infinitely small” part of ¢ is not logically
quite precise (see also Section IL.7 for further details). However, if we apply the idea
carefully, it can be useful especially in situations when we need to derive formulas
expressing various geometrical and physical quantities.

V.4.2. The surface integral of a vector function. Let o be a simple piccewise-
smooth surface in E3 and let f be a vector function (with three components) defined
on o. We say that the vector function f is integrable on surface o if the scalar function
f-n is integrable on o (in the sense explained in paragraphs V.2.2 and V.2.4). The
integral ‘ffu f-ndp is called the surfuce integral of a vector function f on surface
o, and it is usually denoted by [[ f-dp.

The surface integral of a vector function is also often called the surface integral of
the 2nd kind. It defines the fluz of vector field f through surface o.

V.4.3. Remark. The fact that the normal vector n need not exist in all points
of a simple piecewise—smooth surface ¢ does not matter. n need not be defined at
points where the smooth parts of ¢ are connected and they form at most a finite
number of lines. The surface integral of a vector function is defined by means of the
surface integral of a scalar function and we already know that this integral does not
depend on the behaviour of the integrand in a finite number of points or curves. (See
paragraph V.2.6, part c).)

V.4.4. Remark. It is very important to understand various ways in which the

surface integral of a vector function can be written down, and to recognize correctly
what they mean.

If the vector function f has components U, V and W then the integrals

/faf.dp, f‘/gflndp, /L(U,V,W)-dp,

//U(U,V,W)-ndp, /L(UingHWk)-dp, /L(Ui+Vj+Wk)-ndp

have the same meaning.
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Another denotation of the surface integral of a vector function also sometimes
appears in literature. It is based on the idea of expressing vector dp in the form

dp = (dydz, dedz, dydy) = 1dydz+j dudz +k dudy.

Substituting this to the integral [f (U,V,W)-dp &nd computing the scalar product,
we obtain ;

//f-dp = f/('U,v,W)-dp = f[Udydz+dedz+dedy.

Nevertheless, we think that this last notation of the surface integral of a vector
function can lead to confusion, so we will not use it.

V.4.5. Remark. The surface integral of vector function f is defined by means of the
surface integral of the scalar function f-n and so the main properties of the surface
integral of a vector function are the same as the properties of the surface integral of
a scalar function. Thus, we can rewrite items a), b) and ¢) of paragraph V.2.6 with
the function f-n instead of f and we obtain valid statements for the surface integral
of a vector function. (Do it for yourself!)

The main difference between the surface integral of a scalar function and the
surface integral of a vector function is that the surface integral of a vector function
depends on_the orientation of the surface. This is the content of the following theo-

IeImn:

V.4.6. Theorem. If a vector function f is integrable on surface o then it is also
integrable on surface —o and

[Luss=ffron

This theorem is an immediate consequence of the definition of the surface integral
of a vector function. The integral f[ f-dp equals JI f:ndp where nis the normal
vector to o. n defines the orientation of surface o. If we change the crientation then
vector n changes its sign and hence also the surface integral [[ f-ndp changes its
sign.

V.4.7. Evaluation of the surface integral of a vector function. The surface
integral of a vector function f on a simple smooth surface ¢ can be evaluated by
means of a parametrization of o. Let P be such a parametrization, defined in set
B C E;. Let ¢ be oriented in accordance with parametrization P. Then the normal
vector n to o can be expressed in all “interior points” of o as n = Py, X Py /| Py X Py|.
(See paragraph V.1.2, formula (V.1).) Using the formula [ f-dp = [[ f-ndp
and formula (V.5), we obtain

flf-dp:f[gf.ndp:

_ _ Py (u,v) x Py(u,v) u‘v w.o)| du do
= f/Bf(P(u!UD \Pu(u,t:)xPﬂ(u,v)i |PU-( 1 )XP,,( 3 )id d,
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M’f.dp - //ﬂf(p(u,u))-(pu(u,v}xpu(u,v)) du dv. (V.6)

If surface a is not oriented in accordance with parametrization P (i.e. P generates
the opposite orientation of o) then formula (V.6) holds with the sign “—” in front of
the integral on the right hand side.

The surface integral of a vector function on a simple piecewise—smooth surface
a which is a union of simple smooth surfaces oy, o4, ..., o (see paragraph V.1.6 for
deta;’a_lrs_}: can be computed in such a way that we first evaluate the integral on each
smooth part o1, 63, ..., on of surface ¢ (e.g. by méans of the parametrization of
these parts) and then we use the formula - e

/fuf-dp = Zm:f./ﬂf-dp.

i=1

Some simple piecewise-smooth surfaces, e.g. spheres, ellipsoids aiid parts of co-
nes, can be described by means of a mapping whose properties differ from the required
properties of parametrizations (see paragraph V.1.1) only on a set of two-dimensional
measure zero. Examples of such mappings are given in paragraphs V.2.10 and V.2.11.
These mappings (let us recall that they are also often, not quite correctly, called the
parametrizations) can be used in formula (V.6) in the same way as parametrizations.

The other possible way of evaluating the surface integral of a vector function is to
apply the Gauss~Ostrogradsky or Stokes theorem. These theorems will be explained
in Section V.6. :

V.4.8. Example. Find the flux of the vector field f(z,y, z) =yzj+ 2 k through
the surface o cut from the semicircular cylinder V¥ +z22=4, 220 by the planes
z=—1 and z =1. Surface ¢ is oriented by its outward normal vector.

We can parametrize surface o by the mapping
P(u,v) Pom=u, y=2c0sv, z=2sinv; [uv]€B=(-1,1)x(0,x).

{0, —2 cos v,.—2 sip v). The unit vector perpendicular to g for example at the point
[0, 0, 1] (which corresponds to u = 0 and v = 7/2), expressed by méans of pararmet-
rizatic_)n Pis ' e 2T

We can find that Py = (1,0,0), P, = (0, -2 sin v, 2 cos v) and P, x P, =

Bow P,
[Py % Py| lu,e)=(0, x/2]
Since surface o is oriented outward, the above vector is equal to —n (where n is the
normal vector to o at the point [0, 0, 1]). Hence, parametrization P generates the

opposite orientation of surface o. This means that if we use formula (V.6), we must
write the “~" sign in front of the integral of the right hand side:

f[’(925+z2k)-dp = —/L{ésinvcmvj+4sin2v k] (P.xP,) dudv =

= (0, 0,~1).
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1 ™
= 7./‘ ] (U, 4 sin v cos v, 4 sin? v) - (0, —2 cos v, —2 sin u) dvdu =
-1Jo

1 ™
—/ j’ [—8 sin v cosiv—8sin3'v] dv du = 32.
-1Jo

V.5. Operators div and curl.

V.5.1. Divergence of a vector field. Let f = (U, V.W) be a differentiable vector
field in domain D C E;. The divergence of f is a scalar field in D which is denoted
by divf and it is defined by the equation
i au ov oW
div f = ey + E + B
V.5.2. Curling of a vector fleld. Let f = (U, V.W) be a differentiable vector field
in domain D C Es. The curling of f is & vector fleld in D which is denoted by curl f
and it is defined by the equation
4. & k
T a a a h(aW v au  ow av BU)
Rl |8 By 92| \@y 9z 8z Oz’ Bz By
u v, W

Instead of the curling of a vector field, denoted by curl f; we often speak about
the rotation of a vector field, and we denote it by rot f.

V.5.3. The operator nabla. We denote by V and refer to as the operator nabla
the vector whose components are operators of partial differentiation with respect to
z, y and z. Thus

g a9 9

V=(z 5 2)

bz’ Oy’ Oz

(We use the word “operator” because it prescribes performance of some operations
- in our case Performa,nce of partial derivatives with respect to z, y and z.)

The operator nabla is often used in the denotation of various scalar or vector
fields. You already know that the gradient of a scalar field ¢ is a vector field whose
components are the partial derivatives of ¢ with respect to x, y and z. This can be
expressed by means of the operator V in this way:

56 04 ©
grad g = Vi = (a_i aj af)

" On the other hand, divergence of a vector field f = (U, V, W), which is a scalar
field, can be written down by means of the scalar product of V and f: ;
U a8V aw
divf = V-f = V- (U,V,W) = i che
Bz ' By 9z’
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Finally, curling of a vector field f = (U, V, W) can be written down as the vector
product of V with f:

i

k) j k
ol = Vel . 2 E | (ﬂ_a_v’ oL Wi ﬂ_é‘g)
0z’ 9y’ 0 dy 9z’ 8z Gz’ Br By
u, Vv, W

V.5.4. Remark. Operators grad, div and curl play an important role in the theory of
all possible types of fields (flow fields of various fluids, gravity field, electrostatic field,
electromagnetic field, etc.). Their mathematical properties and relations are therefore
very interesting not only from the point of view of applied mathematics itself, but
also from the point of view of many other disciplines. More detailed study of these
properties would go beyond the scope of this text. Nevertheless, let us mention two
formulas whose validity follows immediately from the deﬁnitions of grad, div and
curl and it can be easily verified:

If ¢ is a twice-differentiable scalar field in a domain D C E; and f is a twice—
differentiable vector field in D then

curlgrad ¢ = 0 = (0, 0, 0), (Vv.n
divcurl f = 0. (V.8)

You already know the geometrical meaning of the gradient of a scalar function
¢ from Chapter I — grad ¢ is the vector which shows the direction of the greatest
growth of function ¢. The physical sense of the other two operators, div and curl,
will be explained in paragraphs V.6.5 and V.6.8,

V.6. The Gauss—Ostrogradsky theorem and the Stokes theorem.

We already know the “two-dimensional” Jordan theorem — see paragraph IV.5.1.
The next paragraph contains a “three-dimensional” version of the same theorem. It
says again something that is very clear at first sight. However, you would be surprised
that it is quite complicated to prove. (We do not show the proof in this text.)

Note that if no other details are given then “surface” refers to a simple piecewise-
smooth surface and “closed surface” means a closed simple piecewise-smooth surface.
(See paragraph V.1.8.)

V.6.1. Jordan’s theorem. Let o be a closed surface in Ey. Then there exist two
disjoint domains G1 and Gy in Eg such that o is their common boundary and

&) E3= G] UJUGQ,
b) l:one_dftbe domains Gy, Gy is bounded and the second is unbounded.

V.6.2. Interior and exterior of a closed surface in E;. Let o be a closed surface
in E;3 and G, G be the domains whose existence is given by Jordan’s theorem. That
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domain of Gy, G which is bounded is called the snterior of surface o and it is denoted
by Into. The second domain, which is unbounded, is called the ezterior of o and it
is denoted by Exto.

We say that the closed surface o is oriented to its exterior (respectively to its
interior) if its normal vector (at all points of o where it exists) is oriented to the
exterior of o (respectively to the interior of o).

V.6.3. The Gauss—Ostrogradsky theorem. Suppose that
a) vector function f has continuous partial derivatives in domain D C Es,
b) o is a closed surface in D, oriented to its exterior and such that Inte C D.

Then ‘ /f f-dp = fj/ div f dzdydz. (v.9)
o Int o

V.6.4. Example. Calculate the flux of the fleld f(z,y,2) = syi+yzj+ zzk
outward through the surface o of the cube (0,1} x {0,1) x {0,1).

All the components of f are continuously differentiable in the whole space E;
and the considered surface is a closed surface in Ej, oriented outward. Thus, the
Gauss—Ostrogradsky theorem yields

f/f—dp:-/:/:/I"”divfd:cdydzz
fff a(xy) 3(5;;) a(;:))dg:dydz:/0]'/01/0]@+z+w)d:sdydz=%‘

V.6.5. Physical sense of divergence. Suppose that the vector function f has
continuous partial derivatives in domain D C E; and A € D. Denote by o the
sphere with center A and radius r, oriented to its exterior. Then

div f(4) = lim Ay f(f) /:// dedydz =
r—0- :";' r Int oy

1
= r_’0+ §1rr3 //./f,!: . div f(z,y,2) dedydz = 111[1)1+ 511'?'3 /:/ f(z,y,2) - dp.

If the vector field f has a source at point A then ff f-dp is positive for r > 0
sufficiently small and the limit of this integral divided’ by the volume of Int o, for
r — 0+ gives the intensity of the source. Thus, div f(A) expresses the intensity of
the source of f at point A.

For example, if v is the velocity of a moving incompressible fluid then divv =0
in all points of the flow field. This follows from the fact that the conservation of mass,
together with the incompressibility of the fluid, gnarantees that the fluid cannot arise
or disappear at any point A and so the velocity field has no sources (positive or
negative). (The equation div v = 0 is the very well known equation of continuity
for incompressible fluids — you will hear more about it later, in mechanics of fluids.)
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V.6.8. Stokes’ theorem. Suppose that
a) vector function f has continuous partial derivatives in domain D C E,,

b) o is a surface in D whose boundary C is oriented in accordance with .

Then j{ f.ds = / j curl f - dp. (v.10)
(o) 4

V.6.7. Example. Evaluate the line integral [ f-ds where f(z,y,2) = zzi+
zyj+ 3zzk and C is the boundary of surface o which is the portion of the plane
2z+y+2z=2 in the first octant. C' is oriented counter—clockwise as viewed from
above.

A vector perpendicular to ¢ is given by the coefficients from the equation of
g% (2,1,3) 1 you sketch' a figure, you can observe that surface ¢ is oriented in
accordance with its boundary C if its normal vector differs from the vector (2,1,1)
only by the length: n =(2,1,1)/v8.

The components of vector field f are continuously differentiable in E; and
curl f = (0, z — 32, y). 'Thus, the Stokes theorem yields

/-f-nds=]fcurlf-dp=j/(0,:c—3z,y)-dp. :
c o o )

Surface ¢ can be parametrized by the mapping
Plu,v) : z=u, y=v, 2=2-2u—v; [u,v]€B

where B = {[u,v] € Ez; 0 <u <1, 0 <v<2-2u}. We can easily find that
Py =1(1,0,-2), P, =(0,1,-1) and P, x P, = (2,1,1). Since the orientation
of the last vector is the same as the orientation of the normal vector m, surface o is
oriented in accordance with parametrization P, Using formula (V.6), we obtain

] (0,2 —3z,y).-dp

2-2u
f (0, — 6 + 6u + 3v, v) (2,1, l)dudv_f / [7u+4v—6]dvdu__—1.

o

V.6.8. Physical sense of cur]ing.
Suppose that the vector function f has
continuous partial derivatives in the
domain D C E3, A€ Dandaisa
vector whose length is one. Denote by
o, the disk with center A, radius r 'and
normal vector a. Denote further by Cr
the circle which is the boundary of the: . .-

disk ¢, and is oriented in accordance . . .. cr- Fig. 16
with ¢,. Then we have
4 . curl f(A) a:
1f(4)-a = lim ——F"— -
curl f(4)-a r_l’!10+ f r"#0+ =y // curl f(z,y,2)-adp =
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r——>0+ wr 2 f] s f(x,y)Z) dp N "‘lirgl"l‘ ’i'l"l"2 f f i kL

Thus, curl f{4) is the vector whose scalar product with any unit vector a ex-
presses the intensity of circulation of f around circles perpendicular to a, oriented in
accordance with a.

V.7. Exercises.

1. o= {[w,y,z] €BEy; 2249 42=4,220,y>0, 2> 0}, o is oriented so that

its normal vector m at every point of o satisfies n-i > 0.

a) Verify that the mapping P(u,v) = [2 cos u, 2 sin u, v] for [u,v] € B =
{—m/2,m/2) x (1,4) is & parametrization of o (i.e. that is has all the properties
named in paragraph V.1.1). Decide whether ¢ is oriented in accordance with this
parametrization.

b) Show that the mapping Q(u,v) = [vZ—uZ, u,v] for [u,v] € B =(-2,2)x
{1,4) is not a parametrization of o.
2. o is the half-sphere {[z,y,2] € Bg; 2® +¢y* +2° = a?, z >0} (a > 0), oriented
by the normal vector n = (ny,n2,n3) such that ng > 0. Set Bis B = {[u,v] €
Ey; u? 4 v? < a?}.
a) Show that the mapping
2au 2av 2a®

P(u,v) = :
(ﬂ U) a2+u2+v2’a2+u2+v2’a2+u2+02.
is a parametrization of surface ¢ (i.e. it has all the properties named in paragraph
V.1.1). Decide whether o is oriented in accordance with this parametrization.

b) Show that the mapping P(u,v) = [u, v, Va2 —u? —v?|, [u,v] € B, isnot a

parametrization of surface ¢.

;—a}; [u,v] € B

3. o is a simple smooth surface, oriented by the normal vector n. Find its parametri-
zation, show that it has all the properties named in paragraph V.1.1, and determine
whether ¢ is oriented in accordance with the chosen parametrization.

a) o is the triangle with the vertices A = [1,-1,2], B = [2,1,3], C -1,2,4],
n-j<o0

b) o= {[z,y,2] €Es; 2® +y* =4, £ 20, 0 <z <4}, n=(1,0,0) at the point
P=[2,0,2]

¢) a={[z,y.2] €y 2® +y* =2, ¢y20, 25 1}, P =1[0,0,0], n=(0,0,-1)

d) o is the parallelogram with the vertices A = [1,1,1], B = [1,4,4], C = [0,5,6],
D =[0,2,3], n x k >0 at every point of ¢

e) o is the disk in the plane = = 2 with its center at the point [2,-1,3] and radius
r=4,n=(-1,0,0) at every point of o

f) o= {[z,y,2]€Es; 2 +9y2 +2* =4 222}, P=[0,0,2}, n=(0,0,1)

g) o={[z,y,z] €Es; sy—2=0, 2° +y* <} (¢>0), n-k>0
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4. Verify that the set o = {X € Ey; X = P(u,v), [u,v] € B} is a simple smooth
surface in B3 and P is its parametrization,

a) Plu,v) = [u, 4u? + 9%, v], B = {[u] € Ep; u®/9+0?/4 < 1}

b) P(u,v)= [y, v,4—u—v], B= {lu,v) €Eg; u>0, v >0, u+tv <4}

¢) P(u,v) = [3cos u cos v, 3 sin u cos v, 3 sin v], B=(0,7) x(0,7/4)

5. Verify that o is a simple piecewise-smooth surface. Find parametrizations of the

simple smooth parts of o,

a) o={[z,9,2] €Eg; z=4— z? +y2, z > 0}
o= {[z,y,2] € E3; z=4— /22 2, 0<z<2}

¢) o1Uoz where o1 = {[z,y,2] € E3; ¢* +1° < 16, 2z = 0}, o0 = {[m,y,z} €
E;z; z2=4— /22 +42, 2?_0}

-d) o is the boundary of D = {[z,y,2] € Eg; 2% +y? +22 <4, 4—2? —y? < 4z}

6. Decide about the existence of the integral [ fa f dp.
a') f(zaysz) ! (xy In |$|)/zz o= {[3’:1:”':2] € ES; (1—2)2 +y2 +22= L,z> U}
b) flz,y,2) = (ey In |2])/z, o = {[z,y,2] € Bgj z=1+2% +4?, 2 <2}

e flz,y,2) = (2® +y* +2* = 1)7!, o is the sphere with its center at the point
5'=[0,0,3] and radius r = a

7. Evaluate the area of the surfaces from examples 4c, 5b, 5c, 3g
8. Evaluate the surface integrals

a) f/myzdp, o= {lz,y,2] € By; y? +9:* =9, 1<2 <3, y 20, 2> 0)

b) f/ zz dp, o is the triangle with the vertices 4 = [1,0,0], [0,1,0] and
“ c =10,0,1]

/ z(*+y*) dp, o = {[z,y,2] € By; 2® + 9> + 2* = a?}, (a > 0)
d) ff(xy+yz+zz)dp, o ={[z,4,2] € By; y = V2T T 22, o? + 2% < 2}

e) //("’“+y+2) dp, o= {[a,y,2] € Es; 2* +4* + 22 = a?, £ <0} (a > 0)

dp
f) ffvmg o ={[z,y,2] € Bg; e’ +y2 =9, 0< = <3}

g) ff(:cz +y%) dp, o is the surface from example 5d

9. Find the center of mass of surface ¢ if mass is distributed on ¢ with the density
2.

a) play,z) =2, o={[2,4,2] €Ey; 2= /2 + 22, y 20, 0< 2 < 2}
b) p(xsy!szmyza g = {[msy,z:[EEE}; $2+2224, z >0, 220, 059’53}
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10. C is the circular cone with the radius of its basistr =a >0 a.nd thf: hc%ghb h> U
Surface o is the boundary of C. The planar density of the mass dlStrl!)utIOI). on o is
p = const. Evaluate the moment of inertia of 7 with respect to the axis of cone C'.

11. Evaluate the flux of vector field f through surface o.

o) f(z,y,2) =yi—zit+zk, o ={[z,y,2] €Esj 2= 4—a2—y?/9,y 20,220},
o is oriented so that the angle between its normal vector (at any point) and the
vector k = (0,0,1) is acute (i.e. less than 7/2).

b) f(z,y,2) = (0, 0,y), o is the triangle with the ve_rtices A=10,0,0, B= [5,0_, 1],
C = [1,4,1], oriented so that the angle between its normal vector (at any point)
and the vector k = (0,0,1) is acute.

o) f(z,y,2)=zi+yj+ zk, o is the cylindrical surface 224y* =9, 0<z<4,
oriented to the interior of the cylinder.

d) f(z,y,2) = (z%,y%,7%), @ is the part (corresp?nding; to z 2.0) of the sphere
with its center S = [0,0,0] and radius r = 2, oriented so that its normal vector
at the point [0,0,2] is n = (0,0, 1).

e) f(r,y,2) =zi—=zj+ yk, o is the parallelogram A = [0,0,0], B = [0,3,8],
C=[-1,4,5, D=[-1, 1,2], oriented by the normal vector n = (1,-1,1). i

f) f(m,y,z) = (ZZ_yZ.‘ y2—221 z2’_$2)' o =o01Urgs, 01 = {[m!y'n[]] € Eg; m2+y <
1, 520, y20}, op={[z02 €By e +22 <1, 220,22 0}, the normal
vector to og is n = (0,-1,0).

g) f(z,9,2) = zi+yj—2ek, o= {lnyz By y=9- Vil + 2%, y 2 3},
n-j<o0.

B) £(z,9,2) = (&%9%, %), o= {[&,v,4] € Bs; /16 +2%/4=1, 220,05z 2
3}, the normal vector n at the point P =[1,0,2] is n = (0,0,-1).

i) flz,y,z)=cityi- zk, o =K{[$,y,z} €Esy 2 +yP+ei=4 2 0}, the
normal vector n at the point P = [2,0,0] is n=i= (1,0,0).

D) fz,y,2) = (5y), 0= {lz,y,2] EEg; s+ 2 =2, a? 4 y* < 4}, the normal
vector is n = (1,0,1)/v2.

12. Evaluate the flux of vector field f through the closed surface a. If it is possible,

apply the Gauss-Ostrogradsky theorem. -

a) flz,y,7z) =zityi+ 2k, o is the sphere with the center at the point Sp =
[z, Yo, 20] and radius r =a >0, oriented outward.

b) flw,y,2) =yi+zi+ zk, o is the sphere with the center at the point Sg
[z, Y0, 20] and radius r = @ > 0, oriented outwaxd.

il

¢) f(z,y,2) = (a?,9%,2%), o is the sphere with the center at the point Sp
[0, Y0, 20] and radius r = a > 0, oriented outward.

d) flaz,y,2) = (y,2%,—2), o isthe boundary Qf the set D = {[z,v,2] € By; x? +
y? <a?, —a<z< a} (a >0), o is oriented to the interior.

e) f(z,y,2) = (2?,9%,2%), o is the boundary of the set D = {[z,y,2] € E3; —2<
2 <4—g?—y? 2?#y? <4}, ois oriented to the interior.
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f) f(z,y,z) = zi+yj+ 2k, o is the boundary of the set D = {[m,y,z_] €
Eg; P +22<at, 0<a< 3}, o is oriented to the exterior.

g) f(z,y,2) = (2°,2), oisthe boundary of the set D = {[z,y,z] € Es; 2?4y <
z < 4}, o is oriented to the exterior. .

h) f(z,y,2) = 2eyi—y*j+2zk, o= {[z,5,2] € Es; 2[4+ 4?/4+2*/9=1}, ¢
is oriented to the interior.

i) f(z,y,2) = 2®i+ %] + 2%k, .o is the boundary of the set D = {[z,y,7] €
Es; a2 +y* +2° < a?, y >0} (a >0), ¢ is oriented to the exterior.

i) f=(x—1,y+2,2), ¢isa closed surface in E3, oriented outwards, such that
ma(Int o) = 5. :

13. Evaluate the circulation of vector field f around the closed curve C. If it is
possible, apply the Stokes theorem. :

a) f(z,v,2) =(y,2,¢), C is the intersection of the cylindricel surface 2* +y* =4
and the plane z + z = 0. C is oriented so that its unit tangent vector at the
point [2,0,-2] is 7 = (0,1, 0).

b) Brga) = Gupnsal, 0= llngal &8y o 4u= 1, 32 £ =1}, Cis
oriented in accordance with the surface A = {[z,y,2] € Eg; z+y =1, y*+22 <
1} and the orientation of A is given by the normal vector n=(1,0,1)/+2.

¢) flz,y,2)=(z+1)i+(z—y)j+yk, Cisa circle which is the intersection of the
sphere z?+ y? + 2% = 2 with the plane z+y+.2z = 0. . C is oriented clockwise
as viewed from the point [0,0, 10].

d) f(z,y,2) = (—y/(a? +v2), »/(z? +17), 22), Cisacircle z? +y? = a? (a > 0),
z=h (h >0), oriented counterclockwise if viewed from the point [0, 0, 2h].

L

VI. Potential and SoleI‘lo.i{dal Vlelc't‘o‘.'rﬁ
“Field or

VIL.1. Independence of the line integral of a vector function on the‘path.
Potential vector field. ' '

VI.1.1. Independence of the line iJﬂ:é:g,'fra.l of a vector function on the path.
Let f be a k-dimensional vector field in domain D C E; (for ¥ = 2 or k& = 3).
‘Suppose that for any two curves'Cy and Cj in D, such that i.p.Cy = i.p.C, and
t.p.Cy = t.p. O3, the line integrals fC‘x f.-ds and [ f-ds exist and are equal.
Then we say that the line inteqral of f does not ahepevrwl2 on the path in D.

VI.1.2. Theorem. The line intt;gfal of vector function f does not dépend on the
. path in domain D C Ei (for k = 2 or k = 3) if and only if the circulation of f

around every closed curve C in D is equal to zero.
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Proof: a) Suppose at first that the line integral of f does not depend on the path
in D, and C is a closed curve in D. Then C can be decomposed to the union of two
curves K; and K such that ¢.p. K3 = t.p. K2 and t.p. Ky = 1.p. K. Putting Cy = K;
and Oy = — K3, we get two curves in D with the same initial and terminal points. The
independence of the line integral of f on the path implies that Jo frds= Jo, £ ds.
This implies

ff-ds:] f-ds+,f f-ds = f‘dS“‘f f-ds = 0.
C Ky K, Cy Ca

b) Suppose now that the circulation of f along any closed curve in D is zero.
Let ¢ and C be two curves in D such that i.p. Cy = i.p.Cy and t.p.Cy = t.p.Ca.
Suppose for simplicity that curves C and Cy do not have any other common points,
i.e. they do not intersect or touch at any other points. Then the union C' = C1U(—C3)
is a closed curve in D and so the circulation of f around C' is zero. This implies:

/ f—ds:[ f-ds+ f-ds = f-ds
(o cyu(—Cs) Ca Cs

A similar approach can be used in the case that the curves Cy and ' have more
common points than their initial and terminal points, and it can also be proved in
this case that the line integrals of f on €} and C are equal.

VI.1.3. Potential vector field. We say that the vector field f in domain D C Eg
(fork=2or k= 3) is potential ficld in D if there exists a scalar field  in D such
that

f = gradp

in D. Scalar function ¢ is called the potential of £ in D.

VI1.1.4. Remark. Recall that

dp O : dp Op .
grad ¢ = (:9%, -3—(5) (if &=18), grad ¢ = (6_:’ vé%, a—i) (if k= 3).

1t is quite obvious that if f is a potential field in domain D and D' is a domain
quch that ' C D then f is also a potential field in domain D',

You will see later (in paragraph VI.2.4) that e.g. gravitational and electric fields
are examples of potential fields.

A scalar funetion ¢ which is a potential of a potential vector field f has some
properties which are in some sense analogous to the properties of an antiderivative.
For example: :

Iff isa potentia‘fl vector field in domain D C Ej then its potential ¢ is unique up’

to an additive constant.
This means that:
a) w+c is also a potential of £ in D for every real constant c.

b) Any other potential ( of f in D differs from p at most in an additive constant.
In other words: If ¢ is another potential of f in D then there exists a constant
¢ such that ( =p+c¢ inD. .
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Assertion a) is very simple — the equation grade =f in D immediately implies
that grad(p+c)=1f and so ¢ + ¢ is also a potential of f in D.

Assertion b) is also quite obvious: If ¢ and ( are two potentials of f in D then
f=grady and f = grad( in D and so grad( — grad ¢ = grad (¢ — ¢) = 0. However
the only function whose gradient is zero in domain D is a constant function. This
implies the existence of a constant ¢ such that ( —¢p =c¢ andso (=¢+¢ in D.

Anlother analogy between the potential ¢ of a potential vector field and the
antiderivative to a function of one variable is the similarity of formula (IV.1) (see the
next theorem) and the Newton—Leibnitz formula (II.6).

VI.1.5. Theorem. If f is a continuous and potential vector field in domain D, ¢
is a potential of £ in D and C is a curve in D then

fc £ i =oln O —wlin ) (VL)

Proof: Sinceis apotential of f in D, f isequal to grady in D. Suppose
that C is a simple smooth curve in D and P is its parametrization defined in the
interval {a,b) such that curve C is oriented in accordance with P. Let us denote by
z(t), y(t) and z(¢) the coordinate functions of parametrization P. Then

) b . b
/;f-ds = /gra,dtp-ds = /u‘gr&dga(P(t))-P(t) dt = /ﬂ (g—(':(z(t),y(t),z(t)),
i
22 (w(0) w0 20))s G (el ule) 2(0)) - (600 0, 306) =
bra
= [ [5G0, ) + F(e0,u(0200) ie)+

O 11
+F2EO.0,20) 20)] & = [ 2 o(ele),v(e)2(0) b =

= (2(b), y(6), 2(8)) — ¢(z(a), y(a), 2(a)) = @(t.p.C)— p(i.p.C).

The same equality can also be proved in the case when C is a simple piecewise—smooth
curve.

The next theorem is perhaps the most important theorem in this section.

VI.1.6. Theorem. Suppose that f is a continuous vector field in domain D C Eg
(for k=2 or k = 3). Then the next two conditions are equivalent:

a) f is a potential vector field in D.
b) The line integral of f does not depend on the path in D.

Proof: Theimplication a) = b) is the consequence of formula (VI.1).

) Let us now prove the opposite implication, i.e. b) = a). Suppose that condition
b} is fulfilled. Let us denote by U, V and W the components of f. Choose a point
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A € D. The point A was chosen arbitrarily, but we take it as a fixed point from now.
Let X = [z,y,2] be any other point of D. Let us define

lt,o(w,y,z) = j;f»dg (VL2)

where C is a curve in D such that i.p.C = A and t.p.C = X. (It follows from the
independence of the line integral of f on the path in D that the value of ¢(z,y,2)
does not depend on the concrete choice of the curve C' connecting the points A and
X = [z,vy,2].) We claim that grady =f in D. To prove this, it is sufficient to show
that i
ap
dz
Let us prove for example the first of these equalities. Using the definition of the
partial derivative of ¢ with respect to ¢ at point X = [z,v, z], we obtain

Ay B (et Ry, 2) - e(z,y,2)

k2l = L = 1 ;

Bz %) = gty = lim h
@(z + h,y,z) can be expressed as the line integral of f on the simple piecewise —
smooth curve which is the union of € and the line segment XY leading from point X
to the point ¥ = [z + h,y, 2z]. The unit tangent vector on XV is ¥ = (1,0,0). Thus,

we get

Ay .1 .1
EJ?(X) - P——»Inﬁ h[_/;;uxyf ds__/(;f'dsJ k—0 h XY

1 1
= Jim E]Xy(U,V,W)-(l,O,O) ds = lim +

%f(X):U(X), %E(X)mV(X) and (X) = W(X). (VL3)

I
5
|
—-
2.
w
Il

Uds = U(X).

The equalities in (V1.3) show that f = grady in D and so the vector field f is
potential in D.

VI.1.7. Remark. If f is a potential vector field in domain D C Ey (for k = 2
or k = 3) then the line integral of f is independent on the path in D (by Theorem
VI.1.6) and this means that the circulation of f on every closed curve in D is zero
{by Theorem VI.1.2). If £ has a physical meaning of a force then we can say that the
work done by force f over every closed curve C is zero. Due to this fact, potential

vector fields are also often called conservative frelds.

The path independence of the line integral in potential vector field f has an
important physical meaning: It says that the amount of work done by force f in
moving from point A € D to point B € D is the same for all paths in D, leading
from A to B. This is known to hold for example in a gravitational or an electric field,
where the amount of work it takes to move a mass particle or a charge from point
A to point B depends only on the position of A and B and not on the path taken
between A and B.

Since the value of the integral fc f-ds of potential vector field f depends only
on the position of the initial point and the terminal point of curve C, this-integral is

often written as
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B
/f-ds:f f-ds
’ [ A

where A = 4.p.C and B =¢.p.C.

We have shown the proofs of the last two theorems because they are very inst-
ructive and their ideas can also be used in other situations, Formula (VL.1) provides
a very simple way of evaluating the line integral of a potential vector field when the
potential ¢ of f is known. On the other hand, the idea of the proof of Theorem VI.1.6
shows a method of finding a potential ¢ of a vector field f provided that it is known
that f is a potential vector field. This approach will be applied to concrete example
(see paragraph VI.2.1). We will also show another method of finding a potential  of
f - see examples VI.2.1., V1.2.2 and VI1.2.4.

We have seen that the potential vector field-f in domain D has interesting and
useful properties — especially thé"t its line integral does not depend on the path in
D (see Theorem VI.1.6) and moreover, its line integral can be evaluated by means
of formula (VI.1) (see Theorem VI.1.5). It is therefore very important to be able to
recognize whether a given vector field in domain I is or is not a potential vector field
in D. The next paragraphs will deal with this question. We will distinguish between
the two-dimensional case (see paragraphs VI.I.8-VIL.1.13) and the three-dimensional
case (see paragraphs VI.1.14-VI1.1.18).

VI.1.8. Theorem. (Potential field in E; — the necessary cdndif_ibn.) Suppose
that f = (U,V) is a potential vector field in domain D ¢ E, Suppose that the
components U and V' of f are continuously differentiable functions in D. Then
v _ou _ 0 inD
5s oy inD. (VI14)
Proof: lIf‘(p is a potential of f in D then ' f= (8yp/dz, 180 /By). -Hence we héve
6(p i c’)tp‘ Ty Ml b 3 ey e
- o Ty
in D. This form of I and V, together with the information about the continuity: of

the Partial. derivatives of U and V in D (which means the continuity of the second
partial derivatives of ¢ in D), easily implies condition (VL4). ‘

VL.1.9. Remark. Condition (V1.4) is a necessary but not a sufficient condition. This
means that the two-dimensional vector field f in domain D C E; whose components
are continuously differentiable functions in D can be a potential vector field in D
only if condition (VI.4) is fulfilled, but on the other hand the validity of condition
(VI.4) itself does not guarantee that vector field £ really is a potential field in D. We
can demonstrate this through the next example.

VL1.10. Example. The vector function f = (U,V) = (—. - Yy 5y 5 T )
1 Y 0 2
satisfies condition (VI.4) in the domain TEHyE et 4y

D= {[E,Q]CEQ; o + 1% > 0}.
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(Verify it for yourself!)

Let us now evaluate the circulation of f around the circle Cy: 2% + y? = 2
(where r > 0), whose orientation is positive (see paragraph IV.5.3). It can easily be
checked that the mapping P:z = ¢(t) =r cos t, y = ¢(t) = r sin t (for t € (0, 27))
is a parametrization of Cr whlch a,lso generates the positive orientation of €. Thus,
we have

Yy : T
. = = dy =
fcrf ds j{« x2+y2dx+x2+y2 Y
2 2w
:[ [—rsmt(—rsmt)+ trcost] dt=[ dt = 2m.
0 0

Thus, although the components of f satisfy condition (VI.4), f is not a potential
vector field in D because we have shown that the circulation of f around at least one
closed curve in D is different from zero, (See Theorem V1.1.2.)

QOur next goal is to formulate sufficient conditions which will guarantee that
a given two—dimensional vector field will be potential in domain D C E,;. We will
therefore need the notion of a so called simply connected domain in Ej:

VI.1.11. A simply connected domain in E;. Domain D C E, is said to be
simply connected if each closed curve ' in D can be contra.cted to a point in D
without ever leaving D.

A simply connected domain in Es can also be defined as such domain D C E,
that the interior of every closed curve C in D is a subset of D.

Roughly speaking, domains which have bounded “holes” (and look like a Swiss
cheese) are not simply connected, while domains which do not have such holes are
simply connected. The examples of domains which are simply connected are: the
whole plane E,, the half-plane, E; minus a half-line, interiors of closed curves, etc.
Examples of domains that are not simply connected include: E; minus one point
(e.g. domain D from example VI.1.10), E; minus a bounded subset and an open disk
minus,one point.

VI.1.12. Theorem. (Potential field in E; — sufficient conditions.) Let
a) D be a simply connected domain in Eq and

b) f = (U, V) be a vector field in D, whose components U, V are continuously
* “idifferentiable functions in D and they satisfy the condition

ov _ou
Oz Oy
Then f is a potential vector field in D.

=0 inD. (V1.4)

Proof: Wewill prove that f is a potential vector field in I if we show that the
circulation of f around every closed curve in D equals zero. (See Theorem VI.1.2.)
Thus, let C be a closed curve in D. Since D is simply connected, Int C' C D. Applying
Green’s theorem (see paragraph IV.5.5), we obtain
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BV ou
f-d w:tjf dzdy = 0.
f g Int C 31) Y

(The “+” sign is valid if C' is positively oriented and “—" holds if C is negatively
oriented. However, since the integral on the right hand side equals zero, the signs are
not important.)

VI.1.13. Example. We have seen in example VI.1.10 that the vector field

T
=V = (- mrp)

is not potential in the domain D = {[z,y] € Ey; z* +y? > 0}. However, it is
potential in any sub—domain D' C D which is simply connected! For instance, f is
potential in the upper half-plane D' = {[ z,y] € Eg; y > 0} This follows immediately
from Theorem VI1.1.12. (The validity of condition (VI.4) was already mentioned in
example VI.1.10.)

Thus, we know that vector field f is potential in domain D', but we do not know
the potential ¢ of f in D'. We will deal with methods of finding the potential in
Section VI.2, and we will also return to this example. (See example VI.2.2.)

The following paragraphs deal with three-dimensional potential vector fields.
However, you can find many analogies with the contents of paragraphs VI.1.8-VI1.1.13,
which deal with two-dimensional potential vector fields.

VI.1.14. Theorem. (Potential field in E; — the necessary condition.) Suppo-
se that f is a potential vector field in domain D C Es. Suppose that the components
of f are continuously differentiable functions in D. Then

curlf = 0 inD. (VL5)

P roof: Condition (VL5) is an immediate consequence of formula (V.7) and the
fact that f can be expressed in the form f= grady for some scalar function ¢ (the
potential of f in D).

VI.1.15. Remark. Suppose that vector field f has the components U, V and W.
Writing curl f in components (see paragraph V.5.2), we can observe that condition
(VL5) says the same as the three equations

aw v au  aw oV au
—éy——a— ) 5;—*5;—, 'E;—Fy-—o. (VIG}

Tt can be observed that Theorem V1.1.8 (dealing with the two-dimensional case)
is a consequence of the more general Theorem VI1.1.14. Indeed, if we have a two—
dimensional potential vector field (U, V) in domain D C Ey then f = (U,V,0) is
a three dimensional potential vector field in the three-dimensional domain D x R.
Applying Theorem VI.1.14 now to this vector field, writing condition (VL5) in the
form of equations (V1.6) and using the fact that I/ and V do not depend on z, we
can see that the first two equations in (VI.6) are automatically satisfied and the third
equation in (VI.6) is identical with (V1.4).
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VI.1.16. Remark. Analogously to condition (V1.4), condition (VL5) is the nec-
essary condition, but it is not a sufficient condition! This may be seen from the
three—dimensional version of example V1.1.10: The vector function

Y T
f = (U,V,W) = (____m2+y2, g 0)

satisfies condition (VL5) in the domain D = {[z,y,7] € Eg; 2 +y* > 0}, but
vector field f is still not potential in D, because the circulation of f around the circle
Cr: 2’ +y® =r? 2z =0 (where r > 0) is either 27 or —2m, in dependence on the
chosen orientation of C. (This can be computed similarly as in example V1.1.10.)

However, condition (VI.5) becomes a sufficient condition if it is completed by
the assumption about the form of domain D.

VI.1.17. A simply connected domain in E;. Domain D C Ej; is said to be
stmply connected if each closed curve C in D can be contracted to a point in D
without ever leaving D.

VI1.1.18. Theorem. (Potential field in'E; — sufficient conditions.) Let
a) D be a simply connected domain in Ez and
b) f be a vector field in D, whose components are continuously differentiable func-
tions in D and they satisfy the condition
cwrl f = 0 inD. (VL5)

Then f is a potential vector field in D.

VI.1.19. Remark. A vector field f can also be potential in a domain D which is
not simply connected. However, this cannot be verified by means of Theorem VI1.1.12
(in the two—dimensional case) or Theorem V1.2.18 (in the three-dimensional case).

Theorems VI.1.8, V1.1.12, VI, 1 14 and VI.1.18 will be applied to concrete exam-
ples in the next section.

VI1.2. How to find a potential.

In this section, we will deal with two methods of finding a‘potential ¢ of a
potential vector field. We will explain these methods with concrete examples.

VI.2.1. Example. f= (y?+y cos z+6z, 2oy +sin z+ 5). ‘a) Is f a potential field
in Eo7 b) If yes, find its potential. ¢) Compute the integral fc' f-ds on curve C
which is the part of the parabola y = 2?42 from point [0,2] to point [2, 6].

a) The components of vector field f are continuously differentiable functions and
you can easily check that they satisfy equation (V1.4) in E;. The whole plane E; is
a simply connected domain. Thus, by Theorem VI.1.12, f is a potential field in E;.
Let us denote by ¢ its potential.
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1st method of finding a potential. It follows from the definition of the potential
(see paragraph VL.1.3) that f = grad ¢ in E;. This means that

Bi=y2+ycosm+6$, a—lp=2xy+sinx+5. (VL)
Jz dy
Integrating the first equality in (VL7) with respect to z, we obtain

w(z,y) = 2y’ +y sin ¢ + 32% + Ci(y). (VL8)
(C} is the constant of integration which arose by the integration with respect to z. So
it is a constant with respect to z. However, it can generally depend on y.) Integrating
now the second equality in (VI.7) with respect to y, we get

@(z,y) = 2y + y sin z + 5y + Cy(z). (VL.9)

(C2 is the constant of integration which appeared after the intégration with respect
to y. So it cannot depend on y. However, it can depend on =.) Comparing (V1.8) and
(V1.9), we get

zy’ +ysinz+ 322 + Ci(y) = zy +y5ma:+5y+C’g(z)
3z + Ci(y) = By + Cy(z).

This is satisfied if we put e.g. Ci(y) = 5y and Ca(z) = 3z%. Substituting this either

- to (VL8) or to (VL9) and using the uniqueness of the potential up to -an additive

constant (see paragraph VL.1.4), we get

oz, y) = zy® +y sin = 4 32° + 5y + const. (V1.10)
2nd method of finding a potential. This method follows the proof of Theorem
V1.1.8, and the potential is constructed by means of formula (V1.2): Chaose O = [0,0]
as a fixed point and X = [y, 4] as a “variable” point and put @(zg,yo)="[,f-ds
where C is an arbitrary curve with the initial point O and the terminal point X.
Let us choose curve C' so that the computation of the line integral i as simple as
possible. For instance: Put C = OX' U X'X where OX' is the line segment leading

from point O to the point X' = [2,0] and X'X is the line segment leading from
point X' to point X. Then we have:

go(zu,g,!;?));':: (.[ox;f ]er) (4 +y cos ¢ +6z) dz + (2zy +sin z + 5) dy.

Since y = 0 and z varies from 0 to z¢ on the line segment OX'; we have dy = 0 on
0X' and :

f (y2+ycosm+6w)d:c+(2:cy+sina:+5)dy_= f 6rds = 3.
ox! 0
Further, ¢ = 2y and y varies from 0 to yg on X'X. Hence dz = 0 on X'X and

/ (y2+ycosm+6$)dz+(2my+sin$+5)dy=
XX
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Yo
= f (2zoy 4+ sin zp + 5} dy = Zoye + yo sin zo + Syo.
0

Thus, the value of the potential ¢ at point X is

w(zo,v0) = (fc>x*+~£cfx) (y* +y cos = + 62) dz + (2oy +sin x + 5)dy =
= 3z + 2oyg + Yo sin o + Syo. ‘

Writing [z,y] instead of [zo,%0] and taking into account that the potential is deter-
mined uniquely up to an additive constant, we obtain formula (VI.10).

¢) Using now Theorem VI.1.5, we can evaluate the given line integral:
(2.6]
/f-ds:/ f-ds = ¢(2,6)— ¢(0,2) = 104 + 6 sin 2.
c (0,2]

VI.2.2. Example. We already know from example VI.1.13 that the vector field
t=0V) = (~arm 7yp)

is potential in the domain D' = {[x,y] € Bs; y > 0}. Using the first or the second
method for computation of the potential, we can find that the potential of vector
field f in D'is @(z,y) = — arctan (z/y) + const.

VI.2.3. Example. f = (yz + 22, - y). a) Is f a potential fleld in E27 b) If yes,

find its potential. ‘

a) If we denote by U and V the components of f 'then we can easily compute that
ov _ou
dz Oy

Thus, condition (VI.4) is not satisfied and so applying Theorem VL.1.8, we can see

that vector field f is not a potential field in Es.

=1-2y inE,.

VI1.2.4. Example. It is known from physics that a particle with the mass M at the

point Xg = [z, Yo, 20] generates the gravitational field
(z—za)i+(y—yo)i+(z—2)k

[(z =20 + (y — v0)* + (2 — 20)* |3/

in D= E3; — {Xo}. Since g satisfies condition (VL5) in B3 — {Xp} (Verify this for

yourself!) and the domain B — {X,} is simply connected (Why?), g is a potential

vector field in E3 — {Xo}.

Potential ¢ of g satisfies

g = —&M

dp(z,y,2) s z— 1
s = [(€—20) + (¥ —yo)* + (z — 20 2 P12
Integrating this equation with respect to z, we obtain
kM
Y, Z) = - C ;
p(z,y,2) [z —20)? + (y — )2 + (2 — 20)2]1/2 + Ci(y, z)

114

where Cy(y,#) is the constant of integration. Putting the partial derivatives of ¢
with respect to y and z equal to the second and the third components of g and
integrating with respect to y and z, we can obtain the same formulas for ¢, only with
Ca(z,2) or Cs(z,y) instead of C1(y, z). Comparing all three expressions of ¢, we can
see that we can put Cy(y,2) = Ca(z,2) = Ci(w,y) = 0 and so we get the potential
of the gravitational field g in Eg — {Xo}:

&M
[(z =202+ (y = yo)? + (2 — 2 )21/

olz,y,2) = + const.
You can verify that the electric field generated by a charge @ at point X is also
a potential field in E3 — {Xy} and its potential ¢ has a similar form.

V1.3. Solenocidal vector field.

V1.3.1 Solenoidal vector field. A vector field f in domain D is called solenoidal
if its flux through any closed surface o in D is zero. (Note that the flux of f through
surface o was defined in paragraph V.4.2 as [[ f-dp.)

VI.3.2. Theorem. (Solenoidal field in E; — the necessary condition.) Suppo-
se that f is a solenoidal vector fleld in domain D C Ej3. Suppose that the components
of f are continuously differentiable funciions in D. Then

divf = 0 inD. (VL11)

P roof: By contradiction. Suppose that there exists point Xy € D such that
div £(Xo) # 0. We can suppose that div f(Xy) > 0 without loss of generality. It
follows from the continuity of partial derivatives of the components of f that there
exists a neighbourhood U(Xo) C D such that div f > 0 in all points of U(X,).
Let o be a sphere with the center Xy and with such a small radius that ¢ C U(Xo).
Using the Gauss-Ostrogradsky theorem (see paragraph V.6.3), we obtain

/ff-dpz:l:]f div f dedydz
T Int o

where the “4” sign holds if ¢ is oriented to its exterior and the “—" sign holds in the
opposite case, The integral on the right hand side is positive because Int ¢ C U(X,)
and divf >0 in U(Xy). Thus, the flux of f through the closed surface o is different
from zero and so vector field f is not solenoidal in D. This is the desired contradiction.

VI1.3.3. Remark, Analogously to conditions (VI.4) and (VL5), condition (VI1.11)
is the necessary condition, but it is not a sufficient condition! This may be shown
through the following example: The vector function

_ zityjtzk

T [y 2R J3/2
satisfles condition (V1.11) in the domain D = E5 — O where O = [0,0,0]. (You can
check this for yourself.) However, f is not a solenoidal field in D. We can prove it
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so that we show that its flux through some closed surface o in D is different from
zero. Thus, let o be for instance a sphere with the center O and radius R, oriented
to its exterior. The flux of f through ¢ cannot be evaluated by means of the Gauss—
Ostrogradsky theorem (see paragraph V.6.3) because the components of f do not
satisfy the assumption of this theorem. (They are not continuous at point O which
belongs to Int o.) However, the surface integral [[.f-dp can be computed by
means of parametrization P discussed in paragraph V.2.10:

‘z = ¢(u,v) = R cos u'cos v,
y=%(u,v) = R sin u cos v,
z=19(u,v) = Rsin'v
for u € (0,27), v € { — w/2,7/2). The vector Py x P, is
Py, (u,v) x Py(u,v) = (R? cos u cos®v, R? sin u cos® v, R? sin v cos v).

Using now formula (V.6) and applying Fubini’s theorem II1.3.2, we get

27 w/2
// f-dp = f (f (cos® u cos® v + sin® u cos® v + sin® v cos v) dv) du =
o 0 —7/2 »
2 ™
= / (/ cos v dv) du = 4m.
0 —mf2 e b

Condition (VI.11) becomes a sufficient condition if it is completed by an assump-
tion about the form of domain D:

VI.3.4. Theorem. (Solenoidal field in E; — sufficient conditions.) Let
a) D be a domain in Ey such that if ¢ is any closed surface in D then Int ¢ C D,

b) f be a vector field in D, whose components are continuously differentiable func-
tions in D and they satisfy the condition

divf =0 inD. (VL11)

Then f is a solenoidal vector field in D.

Proof: Let o bea closed surface in D. The flux of f through o can be evaluated
by means of the Gauss-Ostrogradsky theorem and if we also use condition (VI.11),

we obtain
//f dp—:l:/ff divf dzdydz = 0
Inta'

(The sign in front of the triple integral depends on the onentatmn of o. However, it
is not important because the integral is equal to zero.)

VI1.3.5. Example. Vector field f from paragraph VI.3.3 is solenoidal in the domain

G = {[z,y,2] € E3; z > 0}. It can be verified that it satisfies condition (VL.11) in G
and moreover, domain G has property a) formulated in Theorem VI.3.4.
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VI1.4. Exercises.

1. TFind maximaum domains in Eg in which the given vector field f is defined.
Verify whether f is a potential ﬁeld in these domains. If yes, find the potential ¢

of f and evaluate the integral f [, f-ds.

a) f(z,y) =y* 2ey), A=[1,3], B=[3,2]

b) wy)(‘+;,‘=m%3=mﬂ

o) fa,y) = (a%,y?), A=[0,0,, B=103,3

A=[0,1,B=[L2

‘-e) (IJ)_\/-‘l"“'iy'\/uJ?’ ‘=[1:2]!B={4)_2]

- 2$y)1 A = [_3!219 B= [311]

= (12 v

g) f(I: y) = (xva =+ y)7 A= [OuU]) B= [11 1]

b fey) = F5, =1, B=(62

i) f(z,y) = (% + 2, v* +y2t), A=03,-1], B=[L,5]
i) f(z,y) = (1+y* sin 2z, -2y cos’z), A=[m1], B=[r/2,2]

k) f(z,y)=(1ny—z—z,%+;), A=, B= (12

) fe) = (o + o gy VA ~ 0,1}, = o4
m) f(m,y):%,_A:[U,o],B [02] ' .

n) f(z,y) = (ysinz, y—cosz), 4=[0,1], B=[52]

o) f(z,y) = (cos(2y) + v+, y — 2z sin(2y) +2), A=[0,0], B=[-2,2|

p) f(z,y) = (yeﬁ 2$y)7 A= [2, 1, B= {0,0}

2. Function ¢ is the potential of vector field f in domain D C E;. Find D (a

maximum possible), f and ‘evaluate the work done by vector field f on curve ¢
leading from point A to pomt B

a) ¢z ,y,z)_:cy+mz+yz, 5 -,[ 12 ~1], B =[3,4,1]
b) LP(:D,y,Z):hllx +y +22‘_A1_L,. A:—.l,l,E],B:[—.?.,é,—l]

3. Find maximum domains in E3 in which the given vector field f is defined. Verify
whether f is a potential field in these domains. If yes, find the potential ¢.
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3 e = (L2 ) ) ) = (i L 20)

p 2 3+uﬂ’m2+y2’
—zi—yj+k/2 2e—y  x+2y
C) f(x)y}z):T_yz d) f(-T,'(; ): ($2+y2) $2+y211 Z)

e) f(z,y,2) = (% sin z — 4%, —2ay, 2/ cos z) f) f(z,y,2) = y*i+ 22+ 2%k

z z 1 zityj+zk

. et - LR _ rityirER

g) f{z,y,z2) (z—y’ yHmyln(z y)'i'\/;) ) f(a:,y,z) ;——-————I2+y2+22
1) f(z,y,2) = (e*(y +2°), €”, z¢”) i) 2 = (2 -y, v r+z)

k) f(z,y,z}:( +y2’a:3+y2’2z) 1) fz,y,2) = (m— "_zﬁ-i-y )

4. Find maximum domains in Ea. in which the given vector field f is defined. Verify
whether f is a solenoidal field in these domains.

a) £(z,y,2) = (v, 2%,2%) b) f(e,y,2) = (z—y, 2 — 2,y ~2)
C) f(m,y,z) = (“‘Tl Yy —22:) d) f(z,y,z) = (g-! Az _32’ #_g_)
e) f(z,y,2) = (y, 2, 2*) £) f(z,y,2) = (ey, 1 — 42, y2)
(42, 22, ~y) B
g) fz,y,2) = PPl h) f(z,y,2) = (52%,y — 2, In 2)
e (o e ey
. Y 2) = (z? 4+ ¢ +z2)3/2 ’ (z2 + 92 + 22)3/2’ (22 + 92 + Z2)3/2

a) Show that divf=0 in E;— {[0,0,0]}.

b) Evaluate the flux of f through the sphere with the center at the origin and
radius r = 1, oriented outward.

c) Decide whether f is a solenoidal vector field in Es — {[0,0,0]}. (Why?)

d) Find a domain in E3 where vector field f is solencidal.
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