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Introduction

The presented text approximately coincides with the contents of the Mathemat-
ics II course, taught at the Faculty of Mechanical Engineering in the second term. It
deals with multi-variable calculus (i.e. with differential calculus of functions of more
variables and with multiple, line and surface integrals). Functions of more variables
appear more often in science than functions of one variable and their analysis leads
to a large variety of applications. Since the problems we deal with have a more-
dimensional character, their understanding requires not only a computational skill,
but also a good space imagination. We therefore consider the text not as an indepen-
dent textbook, but as a complementary material to the lectures and exercises where
all the topics will be explained and commented in detail.

The text contains many well known theorems of applied mathematics, like the
Green theorem, the Gauss—Ostrogradsky theorem, the Stokes theorem, etc. The con-
clusions of these theorems are certain integral formulas. The students often identify
the theorems with these formulas. However, you should be aware that the important
parts of all theorems are also their assumptions. It would be naive to think that the
conclusive formulas hold in all cases. The opposite is true - they hold only in certain
specific situations. The assumptions of the theorems represent the brief and simplest
description of these situations and they are as important as the conclusions of the
theorems.

Each chapter contains the section “Exercises” at the end. Many further exercises
and solved examples can be found in the textbooks [1] and [3].

The authors wish to express their thanks to Mr. Robin Healey for carefully read-
ing the text and correcting the language. If you still find some misprints or incorrect
formulations in the text then they are only the authors who are responsible.

We believe that this text will be a useful study aid not only for students who
attend the lectures and the exercises in English, but also for all other students who
study in Czech.



L. Functions of Severa] Real Variables

Functions of several real variables very often appear in mathematics and in
science. You already know many formulas which can be understood as definitions of
functions of several variables. For example, the formula V = wr?h, which determines
the volume V of a circular cylinder from its radius r and height k can be taken as
the definition of function V, which depends on two real variables r > 0,h > 0.

1.1. Euclidean space E,.

In this section, we will recall some notions that you know from the Mathematics I
course. We will deal here with Euclidean space E,,, subsets of E, and its properties.

I.1.1. n-dimensional arithmetic space. If n is a natural number (we use the
notation: n € N) then the set of all ordered n-tuples of real numbers is denoted by
R™. Let us define the sum of any two elements [z1, %2, ..., Za), [y1,Y2, -, ¥n) from R
by the formula:

[1717521-"azﬂ} us lylvy%'"lyn] - [Il =+ Y1,%2 + Y2100y Tn + yﬂ]

and the product of any element [z1,22,...,zn] from R™ and any real number A by
the formula
A [.’C],.’Cz, ...,:.v:,.] = [AE1, /\1}3, saey A.Tn].

The set R™ with these two operations is called the n-dimensional arithmetic space.
Its elements are called arithmetic vectors.

1.1.2. Euclidean space E,— definition. Let us define the distance p of any two
elements X = [z1,%2,...,Zn], ¥ = [y1,¥2, .-, ¥n] from R™ by the formula

X, Y)=(z1 —n1)? + (22 —y2)? + .. + (20 — ¥n)?

The set R™ with this distance p defined for all pairs of elements of R" is called
n-dimensional Buclidean space. This is denoted by E,.

1.1.3. Zero element of E,. The point [0,0,...,0] is called the zero element of E,,
or the origin of E,. The zero element is denoted O.

1.1.4. Remark. Elements from E, are often called points, because E; can be
imagined as a straight line, E; as a plane, etc.
The distance between the zero element O and an arbitrary point X of E, is
denoted |X|, i.e.
1X] = p(O, X).

From this it follows that the distance between X,Y € E, can be expressed in the
following way

p(X,Y) = |X -],

where the diﬁerence X — Y is understood in the sense of n-dimensional arithmetic
space as X + (—1) - Y.

In the followmg paragraphs we will define some properties of subsets of E,,
which play an important role in particular in definitions of continuity and limits of
functions.

I.1.5. Neighbourhoods in E,. If X € E,, then a neighbourhood of the point X
is any subset {Y € E,, : p(X,Y) < £} where £ > 0. The neighbourhood is denoted by
U.(X) or simply U(X).

A reduced neighbourhood of the point X € E, is every set of the type
{Y €E,:0<p(X,Y) < ¢} where ¢ > 0, i.e. Ue(X)— X. This neighbourhood will
be denoted by R.(X) or only R(X).

1.1.6. Interior point. Let M C E,. A point X € M is called an interior_point of M
if there exists a neighbourhood U(X) such that U(X) C M.

1.1.7. Accumulation point. Let M C E,. A point X € E,, is called an accumula-

tion point of M or a point of accumulation of M if in every reduced neighbourhood
R(X) there exists at least one point ¥ which belongs to M.

1.1.8. Remark. If you read this definition carefully, you can see that if X is an
accumulation point of M then in every neighbourhood U(X ) there exist an mﬁmte
number of points which belong to M.

From the definition it also follows that even if X is an a.ccumulatmn point of M
then it is possible: X & M.

1.1.9. Isolated point. Let M C E,. A point X € M is called an isolated point of M
if in some reduced neighbourhood R(X) there is no point which belongs to M.

1.1.10. Remark. The following assertion holds:
If M is a subset in E,, X is any point of M and Xis not an .lEOlB.tEd pomt of M,
then X is an accumulation point of M.

If M is a subset in E,, X is any point of M and X is not an accumulation pom’c of
M, then X is an isolated point of M. 4

I.1.11. Boundary point. A point X € E, is called a boundary pa:'nt.of a subset M
if in every U(X) there exists at least one point which belongs to M and at least one
point which does not belong to M.

1.1.12. Open set. A subset M of E, is called an open set in E, (or shortly: an
open set), if every point X € M is an interior point of M.

1.1.13. Examples. See Fig. 1. The following sets are open in E;. Sketch the fourth
one:
0? Eﬂ:

{X €E; : p(0,X) <5},
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{[z,y] € Bz : p([1,0,[z,3)) <1}V {[e,0] € Bz : 2 € (=2 -1)}

1.1.14. Closure of a set. Let M C E,. A closure of subset M in E, (or short]y} a
closure of M) is the name given to the union of M with the set of all accumulation

points of M. The closure of subset M in E, is denoted by M.

L1.15. Closed set. A subset M of E, is called a closed set in E, (or shortly: a
closed set), if M = M.

e b Fig. 2.

The set {X € Bz 7p(X,0) < 1} contains each

2 i t {X € Ba: p(X,0) < ] . :
bbbt e : d its boundary point, i.e. this set is closed.

is an interior point, i.e. this set is open.

1.1.16. Examples. The following sets are closed in Ej:
o, E, X {X€E2:P(01X)i‘5}a ;

{[z,y] € Ex ¢ p([1,2],[z,9]) < 1}U{[e,y] € Bz : z € [-2 -1y € [0;1]}

1.1.17. Remark. We can prove that the complement of an open set in E,, is a closed
set. and vice versa.

1.1.18. Boundary of a set. Let M C E,. A boundary of M is the name given to
a set of all boundary points of M. The boundary of M is denoted by OM.

1.1.19. Examples.

The boundary of {X € Ez : p(0,X) <5} is {X €E; : p(0,X) =5}

The boundary of {X € E; : p(0,X) <5} is {X € Ey : p(0,X) =5}

The boundary of {[z,y] € By : z € (=2;-1)} is {lz,y) EEz : 2 =—-2Vz=-1}.

1.1.20. Remark. We can prove that the boundary of an arbitrary set M in E, is a
closed set. We can also prove that M = M U dM, see Fig. 2.
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1.1:21% Line segmentiin B;,. Let A, B € E, and A # B. The set of points X such
that X = A4 #(B — A), t € [0;1] is called the line segment in E, and it is denoted
it by AB. : /

1.1.22.° Remark. The formula X = A+#(B — A) should be understood in the sense
of n-dimensional arithmetic space as X = A +¢- (B + (—1)- 4).

1.1.23. Polygonal line in E,. Let 4;, Ay,... A, € E,, r be a natural number
r > 2 and A; # Aiy1,4 = 1,2,...,r — 1. The union of the line segments

AjAs UAA3 UL UA A,
TR i
is called a polygonal line connecting points Ay, A,.

1.1.24. Domain in E,. Let D be an arbitrary open set in E,. If for an arbitrary
pair of points of D there exists a polygonal line connecting these two points and
entirely belonging to D, then D is called a domain in E,.

1.1.25. Examples.

The set {X € E; : p(O,X) <5} is a domain in E;.

The set {X € Ey : p(0,X) <5} isnot a domain in E,.

The set {X € E; : p(0,X) <5} U {X € E; : p([-10.0],X) < 5} is not a domain
in E;. .

The set {X € E; : p(0.X) <5}U{[5,0]} is not a domain in E,.

1.1.26. Bounded set in E,. A subset M of E, is called bounded if there exists
r > 0 such that VX € M : p(O, X) <r. i

1.1.27. Examples.

The set {[z,y] € Ez : z € (—2;—1)} is not bounded.

The set M = {[x,y] € E3 : z € (—2;-1), y € [0;1]} is bounded, because it holds for
instance VX € M : p(0,X) < 3. :

1.1.28. Limit of.q sequence in E,. The element A € E,, is called the limit of a
sequence {AM}, A®) € E,, fori=1,2,... if

VU.(A) 3ng€N VieN: (i >ng) = AD € U.(A).

(We read it: For every neighbourhood U, (A) of the point A there exists no € N so
that for all i € N it holds: If i > ng, then A® € U,(A). The fact that A is the limit
of the sequence {A(‘)} is written down in this way: limA®) = A4 or A% 5 4. We
also say that the sequence {A(‘.)} is convergent or the sequence {A(i)} converges to
point A. '

1.1.29. Remark. The definition of the limit of a sequence in E, uses the notion of
a neighbourhood of a point in E,, but formally it is very similar to the definition of
a limit of a sequence in R*, see [4], ITI.1.4.
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On the other hand, the definition of the limit can be overwritten in the following

iyl Ve>0 dnp €N VieN: (izno)#p(A("),A)<s

This means that the limit of a sequence in E, can also be deﬁned in a.no.ther way:
The element A € Ey, is called the limit of a sequence {A9}, AG) g By, fori=1,2,...
if the sequence of real numbers {p(AD), A)} converges to 0 ER. -

1.1.30. Theorem. Every sequence in E,, has at most one limit.

i 1. 4]. The neighbour-
The proof is analogous to the proof of Theorem II.I 1.8, see [
hoods in 11){“ must be replaced by the neighbourhoods in Ej, but the scheme of the

proof is the same.

I.1.31. Remark. Note that AW = [a(li);a(zi),...,as.i)]. The question is what is the
relation between the convergency of the sequence {A®} and the convergency of
{agi)} ) {ag'.)} e {ag)}. The next theorem shows that this relation is

very natural.

sequences

1.1.32. Theorem. The sequence {49}, A®) = [a(l‘.),ag'),...,as.'?] €E,, fori =
1,2, ... converges to the point A = [a1,a2,...an] € En if and only if every sequence

{a(ri)} , converges to the number ar, forr=1,2,..,n.
1.1.33. Remark. The proof of this theorem is based on inequality:
; | . (). L=
|a8? —ar| < p(A(I?,A) <+ SG{Ilr,lia,f.n} |al? —a,| fori=1,2,
1.1.34. Example. Find the limit of the sequence {X()} in E3 where

sin(k) k2 —7k 3]
k '6-5k—2k2"k|

x) =

Solution: First, we find the limits of each coordinate:

sin(k) e ik g
=0 Imemmta Ty B o

lim

Further, using Theorem 1.1.32 we get lim X® = [0,—-3,0].

1.2. Real functions of several real variables.

L2.1. Real functions of n real variables — the definition. T M C E,, n€ N,

then each mapping of M to E; is called a real function of n real variables (shortly:

a function).

I.2.2. Domain of definition, range, graph. A function is a special case of
a mapping and the notions ”"domain of definition of a mapping” and a "range of
mapping” are known from secondary school. Hence, the notions ”domain of definition
of a function” (shortly: domain'of a function) and "range of a function” (shortly:
range of a function) can be regarded as known. In accordance with the notation
which is used in connection with general mappings, D(f) will be the domain of
definition and R(f) will be range of function f.

A graph of function f of variables zy,z,...,z, is the set
G(f) = {IX, f(X)] € R™ : X = [z1,83,..,24] € D(f)}

1.2.3. Remark. Let f be a function of n variables and let X = [z1,%3,...,2a] belong
to its domain. The value of function f is denoted by f(X) or by f(z1,z3,...,Zs).

I.2.4. Example. : ;
Let f be a function of two variables z,y, which is defined for all [z,y] € D(f) =
[3; +00) x R by its function value: f(z,y) =z —3.
Let g be a function of a single variable z, which is defined for all z € D(g) = [3; +00)
by its function value: g(z) = vz —3.

Although the values of functions are defined in both ccases by the same formula,
frand g are different functions with different domains of, definition D(f) C E,,
D(g) C E;. .

1.2.5. Operations with functions. Let f, g be functions of variables z;,z3,...,Zn,
D(f),D(g) C E,. A sum of functions f and g is a function h such that h(X) =
f(X) + g(X) for X = [z1,23,...,2a] € D(f) N D(g). Thus D(k) = D(f) N D(g). We
use the notation h = f + g.

We define a difference of functions and a product of functions f and g by ana-
logy. A guotient of functions f and g can also be defined similarly - however, its
domain is the set [D(f) N D(g)] — {X € D(g) : g(X) = 0}. ¥

1.2.6. Restriction of a function. Suppose that f is a function and M C D(f).
A function which is defined only on M and which assigns to each X € M the same
value as function f is called the restriction of function f to set M, and it is denoted
by flm. The set. of all function values of function f on set M can be denoted by
R(f|a) or by f(M).

1.2.7. Composite function. We assume that function f of n variables y1,¥2, ..., ¥n
is defined for each ¥ = [y1,42,.-Ys] € D C E, and functions ¢1,4,..., gn of m
variables 1, T2, ...,z are defined for each X = [z1,22,...Tm] € @ C E,,. Let

[$1(X), $2(X), ..., #a(X)) € D for X € Q.

Then the function
F(X) = f(#1(X), ¢2(X), ... (X))

9



defined for each X € 2 is called a composite funetion.
1.2.8. Remark. We denote as ¢ the mapping defined by
@(X) = [él(x)u ¢2(X)1 sery ‘i’n(X)] for X € Q.

The mapping ¢ is called a vector valued function of m variables, with D(¢) C Ep

and R(¢) C En.
The fact that F is defined as a composite function by the relation

F(X)= F(e1(X), 2(X), vy Pn(X)) for X €82

is denoted
F=fo¢.

1.2.9. A bounded function. Function f is called bounded above (or upper bounded)
if there exists a number K € R such that VX € D(f) : f(X) < K. We can by analogy
define the function bounded below (or lower bounded). Function f is called bounded
if it is bounded above and bounded below.

Assume further that M!C D(f). Function f is called bounded above on set M if
there exists a number K € R such that VX € M : f(X) < K. We can similarly define
the function bounded below on set M and the notion of a function bounded on set M.

1.2.10. Extremes of a function. We say that function f has its mazimum at the
point A € D(f) if VX € D(f) : f(A) = f(X). We write:

max f = f(A).

Analogously, we can define the minimum of a function f. We denote it min f.

Suppose that M C D(f). We say, that function f has its mazimum on set M at
point A€ M if VX eM: f(A) = f(X). We write: maxy f = f(A). Other often

used notations of the maximum of function f on a set M are

: max f, max f(X ).
Analogously, we can also define the minimum of function f on set M. We denote it:

miny f, mﬂnfa }(ﬂéi‘?‘f(x)'

The maxima and minima of function f are called the estremes (or eztrema ) of

function f.
The maxima and minima of function f on a set are called the extremes on a set

of function f.

L.2.11. Remark. Obviously, the extremes of function f are special cases of the
extremes of f on a set. ) :

10

I.3. Limits and continuity

(Iie:}i;t ioI;lil{':tJ_i: fc;i ;i :::}czim:.'Assume that C € E’” y € R* and the domain of
for each sequence {X (¥} innR?lcl‘l; :1:3:;]?::&5 e
{X(")} S C= f(XD) oy
is true, then we say that function f has the limit at point C equal to y. We write

lim =y.

X=C

Assume that y € R* and the domain of definition of a functi .
following aats 100 a ction f contains the

R, (00) ={X €E,, |X|>r} forsomer >0
If for each sequence {X(V} in R,(co0) the implication

{pf(")]} - 400 = (X)) 5y
is true, then we say that function f has the limit at infinity equal io y. We write

Am =y

Further, we generali.ze the definition of the limit of a function at a point in order
to.bc able to define a limit not only at point X for which there exists a reduced
neighbourhood R(X) such that R(X) C D(f).

I.3.2_. _Limit of a function with respect to a set. Assume that the domain of
definition of function f contains some M C E,, C € E; is an accumulation point of
M, and y € R”. If for each sequence {X (9} in M the implication

{x0} s 0= fxD) oy

is trus 3 1 ‘3 it at 1 (] wit respe(:t to
e then we say that iullctloll hﬂ.ﬂ the 1k poin h
set M

lim f(X) =y

X=cC

malin 01 deﬁnl tion of fuIlCthD f C alns some (
Assume that the do dnt:
M Eﬂ, Such

Ry(0) ={X €E,, |X|>r} r>0

contains at least one point of M, and assume that y € R*. If ;
in M the implication . : ‘for each sequence {X ( )}
{EX{i)I} — 400 = f(XD) 5y

18 true, then we say tha-t iu—ﬂCtlon f hﬂs the l"nut at Inﬁﬂit‘t" wzti’i respect to set
M

lim =
XEM v
|X]|= 400

11



1.3.3. Remark. ‘. ' :
From the definition it follows that if there exists lim f(X) then there exists

lim f(X) for each M C D(f) with accumulation point C and
XeM ,
X=C

lim £(X) = Jim F(X).

X—=C

The next theorem is an easy consequence of Theorem 111.1.8, see [4].

1.3.4. Theorem. o
Function f can have at any point C € E,, at most one limit.

Function f can have at infinity at most one limit. o
Function f can have at any point C' € E,, at most one limit with respect to a set M.

Function f can have at infinity at most one limit with respect to a set M.
1.3.5. Example. Let f bea function of two variables defined by

1 ifz-y=0

f(z,y)={0 fz-yt0 for [z,y) € Ez

Prove that the function has no limit a point [0,0].

Solution: Assume the sequence {[%,2]}. This sequence converges to point [0, 0], see

1.1.32. The function value f(3,1)=0foralln= 1,2,..., hence f (,1) —=0.
Assume the sequence {[%, 0] } . This sequence also c:)mrerges to point [0,0]. The

function value f (1,0) =1foralln=1,2,... hence f (1,0) = 1.

Thus, the function has no limit at point [0,0].

1.3.6. Example. Prove that function f from the previous example has a limit at
p.oint [0,0] with respect to the subset M = {[z,y] € E2:2>0Ay > 0}.

Solution: We can 'see that [0,0] is an accumulation point of M. It is clear from the
definition of f that for all points X € M we get f(X)= 0..Hence, for‘eu.cry sequegc:
{X®}, X® € M it holds F(X®) — 0. Thus, the function f has limit 0 at poin
[0,0] with respect to set M.

The following theorem is fully analogous with iihe theorem a.bm‘.xt the limit oic'l th:
functions of one real variable. It concerns the ]_.imlt of the_ sum, d.\ﬂ:eregce, produ;):
and quotient of two functions of several real variables, and it can easily be proved by
means of Theorem I11.2.13, see [4].

We use the symbol "#,” which has the meaning of any of the symbols ” +7,

n ” ” n
w_m om.? /™ here.
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1.3.7. Theorem. Let C € Ey,, a,b € R*. Let lim f(X)=a, lim g(X) =0
Then lim [f(X)#4g(X)] = a#tb (if the expression has a sense).

" LetabeR". Let lim f(X)=aq, lim g(X)=b. Then

1X|=+oo ! 1X| =400

lim [f(X)#49(X)] = aftb (if the expression has a sense).

1X]=4+

1.3.8. Continuity of a function at a point. We say that function f is continuous
at the point C € D(f) CEn if .

lim £(X) = £(C).

1.3.9. Continuity of a function. We say that function f is continuous if f is
continuous at each point C € D(f). i

1.3.10. Remark. If you read the definition I.3.8 and definition I.3.1 carefully,
you will see that function f can be continuous at point C' only if it is defined in
some neighbourhood of C (i.e. if D(f) contains some neighbourhood U(C'). But this
condition is satisfied for each point of D(f) only if D(f) is an open set. We will now
study a more general situation.

1.3.11. Continuity of a function at a point with respect to a set. Let
M C D(f) C E, and C be an accumulation point of M. We say.that function f is
continuous at point C with respect to set M if - AL

Lim f(X) = f(C).

X=C

Let C be an isolated point of M. Then we also say that function f is continuous at
point C with respect to set M. il

TR ; s oo : -., :

1.3.12. Continuity of a function on a set. Let M C D(f) C En. We say that
function f is continuous on set M if f is continuous at each point C € M with
‘respect to set M.

.1.8.13. Remark. You can see from the definition that if a function f is continuous

on a set M and Mj C M then function f is continuous on set M;.

1.3.14. Theorem (on continuity of the sum, difference, product, quotient,
and absolute value). If functions f and g are continuous at point C, then also the
functions f + g, f — g, f - g, and |f| are continuous at C. If, in addition g(C) # 0
then the function f /g is also continuous at point C.
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(This part of the theorem is also valid whpr,l° we replace " continuity at point C”
b.y # continuity at point C with respect to set M”.) .

If functions f and g are continuous on set M, then also the functions f +i’4f ;g,
f - g, and |f| are continuous on set M. If, in addition g(X) # 0 for all X € M then
the function f/g is also continuous on set M. .

1.3.15. Example. Let f be a function of two variables defined by

22 it [2,y] #10,0]
I £ 7 if [z ) for [z,y] € Ez
9(zy) { il if [z,y]=100,0]

a) Prove that function g is continuous on E; — [0,0].
b) Prove also that function g is continuous on axis z, i.e. on the set {[z,y] € Ez:
z e R1 y = O}‘
Solution:

From the previous theorem it foll \ . ;
?;2 ] # [0,0]. At point [0,0] the value of function g is defined, but g, we claim, has
Nt , We show the proof by contradiction. We suppose that there

imit at point [0,0].
no limit at point [0, ] [z,y) €Es 1 y = mz}. Then for every M we

exists lim g(X). We denote M = {
X —+[0.,0] s

have S § i
)lriglllg(X) = lim g(X).
X —+[0,0

We calculate the limit at point [0, 0] with respect to each defined set M:

| = g tp= lim _28y
" lm ¢ - e = MR TERY
X0l e T Y [ 00l 22 + y
h 2zmz 2m
4= lim =

240 12 +m2$2 e +m2'
Because the value depends on m, we have a contra.dif:tion, see Bgmmk 1.3.3. Hence,
" the limit of g at [0,0] does not exist, and function g is not continuous at [0, 0].
b) The set {[z,y) €eEz : z € R Ay =0} is aset M from a) with m =.0. From the
same calculations (where now m = 0) we get . ]
lim g¢(X)=0.
X —+[0,0)

We have g(0,0)=0, s0 g is cc_intiﬂdous at [0,0] with {'_éspect to {[m,y} : z € RAy =0}
(In other points is ¢ continuous.) Hence, g is continuous on axis .

(on continuity of a composite: function). We assume that
[b1.b2,...bn), functions d1. P2, ..., G are con-
A),...,a(A)]. Let us denote

1.3.16. Theorem :
. function f is continuous at point B =
tinuous at point A = [a1, az, ..y) and B = [#1(A), d2(

14

ows that function g is continuous at any point

& = [p1, P2, ..., @), i.e. @ is a vector valued function defined by coordinate functions
&1, P2, ...y Pn. Then composite function F = f o ¢ is continuous at point A.

We assume now that function f is continuous on set D, functions ¢y, ¢a, ..., ¢y
are continuous on set Q and $(X) = [¢1(X), ¢2(X), ..., ¢a(X)] € D for X € Q. Then
the composite function F = f o ¢ is continuous on set §2.

1.3.17. Theorem (Darboux’ property). If function f is continuous on a domain
M and A, B are any two points from M, then to any given number Y between f(A)
and f(B) and to any polygonal line L C M connecting A, B there exists a point
X € L such that f(X) =Y.

1.3.18. Theorem. Function f, which is continuous on a bounded closed set M, has
its maximum and minimum on this set M. (Thus, max f(X) and }r{rgﬁ f(X) exist.)

1.4. Partial derivatives, differentials.

When we hold all but one of the independent variables constant and derive with
respect to that one ‘variable, we get a partial derivative. For example, the partial
derivative of a function f(z,y) with respect to = at point [zq,yo] is the value of the
derivative of the function of one real variable f(z,y0) at point zo.

1.4.1. Partial derivative of a function. Let f be a function of n real variables
T1,%2,...,&n and A = [a1, a1, ...,a,] € E,. If there exists a finite limit

i flai,az,....ak_1,a; + h,apq1,...,an) = flar, aa, ..., Ge—1, Gk, Gky1, .. Gn)

h=0 h
then its value is called the partial derivative of f with respect to z; at point A. It is
denoted by
af af
— (A — .
Oz G Ok |4

"Let us assume the set of all points A for which a%-'%(A) exists. The function defined

by its function value £L(A) in this set is called the partial derivative of f with
respect to xx. This function is denoted by

of
Oz’

&3

From the definition it follows that
a
D|— .
(35) o

1.4.2. Remark. Let g be a function of one real variable z; defined in the following

" way:

g(zk) = Flag,az, .. Gk—1, Tky Gkt1; s An)

15



From the definition it follows that the partial-.der'}va.tive of f .with respef:t to Tk I;:t the
point A = [a1,a2, ay,) is defined as the derivative of function g at point ak. blenc:,
to calculate the partial derivative with respect to :r:g we asume‘other var;?]; es aﬁ
be constant and calculate the derivative of a function of one varl‘ablc‘a zx. Thus,
theorems about calculation of derivatives also hold for partial derivatives.

Let now f: f(z,y) then %ﬁ(a, b) = ﬂgﬁf;"—)z

= tan a, see Fig. 3:
a

12z |
[x,b,f(x,b)]
g z=f(x.y)
iy f4
[a,b,f (a,b)]
[a,b,0]
Fig. 3. :

L.4.3. Example. We calculate the partial derivatives of function f of three variables

z,y,z given by the formula flz,y,2) = Va2 +y* + 2%, [z,y,2] € E;. Deriving the

expression with respect to r we regard y and z as constants and we get (using the

formula about the derivatives of composite functions of one variable):
% Sl - S
a(zayvz)'_z mz+y2+z7 \ﬁ2+y2+22

Analogously, we get
y of ol

9 —_—_— —(z,y,2) = —/—
REvd) = g %) Jarae
D(f) =Es, D(3)=D(%)=D(§E)=Es —{[0,0,0]}-

L4.4. Remark. Let us suppose that the function f(z,y) 'has partial deriv.a.tivE:s
%t %ﬁ at point [zq,yo]. What can we say about the behaviour of the function in
z? Oy

16

the neighbourhood of point [zo,y0]? For example, is this function continuous at this
point? .-

1.4.5. Example.
_J1 ifz.-y=0
f(z?y)_{o ifz-y#l)

The partial derivatives at point [0,0] exist, but the function is not continuous at [0,0],
see 1.3.5. (Because f(z,0) = f(0,y) = 1 for z,y € R, we get %(0, 0) = %f({l,{)) =0

In the next paragraph we will solve the question of the functions that can be
well approximated by a linear function in the neighbourhood of some point.

1.4.6. Differentials. Let function f be defined in ai neighbourhood U(A) of point
A =[ay,a3,...,an] € E, and forevery X € U (A) let the following relation be satisfied:

f(X) = f(A) = [oa(z1 — @1) + aa(22 — G2) + ... + @a(Tn — an)] +6(X) (14.1)

where a1, @3, ..., @n are some real numbers, £(X) is a function continuous at point A,
e(4) =0, and ; -

&§X) _ :
lim p(X,.A)_— 0. (1.4.2))

Then the function is called differentiable at point A and the linear expression
lai(z1 — a1) + @2(z2 — a2) + ... + @a(zn — an)]

is called the total differential of function f at point A, and is denoted by df(A).

1.4.7. Remark. If the function is differentiable at point A, it follows from the
definition that it must be defined in some neighbourhood of this point. -
Relation (I.4.1) means that the function value f(X) can’'be approximated by
the linear function
f(4) +df(4),

ie. f(A)+[a(e1 —a1) +az(z2 — @) + ... + an(zn — an)]. (1.4.3)
The "error” function of this approximation equals £(X.). From the relation

e(X) _
X+4 p(X, A) sk

i.t_..rf‘c.)llows that this "error” is essentially less than the distance between X and A.

1.4.8. Geometrical meaning. If n = 2 then the graph of f(X) in the neigh-
bourhood U(A) is a surface in E3 which contains the point [4, f(A)]. The graph of
function (1.4.3) is a plane which contains the point [A, f(A4)]. Relations (1.4.1),(1.4.2)
mean that the plane is the tangent plane to the graph of function f(X) at the point

(4, f(A)].
17



We will formulate two theorems which state the relation between partial deriva-
tives and the differentiability of a function. Differentiability is an important property

of a function, being the condition in a number of theorems.

1.4.9. Theorem. Necessary condition of differentiability at a point. If
function f(X) is differentiable at point A then f is continuous at A, and there exist
partial derivatives at this point

af af af
E‘T(A)’ 53;;(/1}, 5;:(A)

and the constants from the definition of a differential a1, az,...,Qn are equal to these

derivatives, i.e.

() = LA — ) + o Aer —ea) +oot 21 (A)(an - au)

1.4.10. Theorem. Sufficient condition of differentiability at a point. If the
function f of n variables &1,%2,.., Tn has its partial derivatives

or o O

3:51 ! 8:1:2 I az,.

in a neighbourhood U(A) and the derivatives all are continuous at poiut A, theu
function f is differentiable at point A.

The next assertion is an easy consequence of the previous theorem.

1.4.11. Theorem. Sufficient condition of differentiability on an open set.

If function f has partial derivatives
of of of

8z, 0z2" "7 B2n

in an open set M which all are continuous on this set M, then function f is differen-

tiable at every point of M.

1.4.12. Example.

We find the equation of the tangent plane to the graph of function f given by
the formula f(z,y) = z* +y? + 2z —y — 7 at the point T =[A, f(4)], A=[3,4].
Solution: We easily get f(A) = 32442 1 6—4—T = 20. There exist partial defivatives
%é(a:,y) = 2z + 2, %g(n:,y) = 2y — 1. We can see that &, %5 are defined and
continuous on Eg, and therefore on some neighbourhood of A = (3,4]. Hence, f is
differentiable at A and i

of

ua) = L @-a+ %L{y—m — 8(c—3)+7(y—4).
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The tangent plane is the graph of the functi . i
ickpe . i nction f(A) + df(A). The equation of the

z=f(A) +df(A) ie =z=f(A)+ %f.
ZlA

g a ;
(- a)+ B_ﬂd(y—dz)-

Hence we get:
= 2048@-3)+7(y-4)

We can calculate the partial derivati i

: atives of composite functi f i
ables by using the so called Chain rule. You already know the iﬁ:ysz¥e:$ varll-
for functions of one variable. Comparé the two formulations e

1.4.13. Derivatives of composi i i
: : posite functions - Chain rule. If functi
@2(X), ..., ¢n(X) are differentiable at the point A = [a1,as,..., am] mdcf::::iifrll(fi);

differentiable at the point B = i
g pus fc’mp-1 - [#1(A), $2(A), ..., #n(A)] then the composite function

F(X) g f(’;bl (-X)s (“’Z(X)l reey d’ﬂ(-x))
in some neighbourhood of point A is differentiable at this point and for k = 1,2,...,m
oF of ,

o 01 of ,_. 04 :
—(A) = —=— ol Sl lp ——— a
Bu( ) o (B)axk (A) + o B)@:r::(A) +.. 5{(3)322‘(:4). (I.4.4)

1.4.14. Examples.

-Let f be a function of two variabl
: : es u,v and let ¢;,¢2 be functi i
variables z,y. A composite function F is defined by its functi;n ;:alue-c e

R R ey

Find the expressions of 2 and 2E . .
oz 5y (Functions f, 41, ¢, are assumed diff :
- and [b1(2.9), d2(2.)] € D(f) if [z,3] € D(é1) N D(é2).) g

SOIut.lO]l. TO S]mphfy the ex S t us denote as qﬁ the vector valued funcl',mn
L pressions, ]e d 5
deﬁned by its flulctloﬂ \’a.lLle.

e

_ ¢(z,y) = [¢1(2.y), d2(2,y)] for [2,y] € D(¢) = D(¢1 N é2)
Using the Chain rule we get: - |

oF, . of a9 9

o (@) = g8 u) B o) + L (6, 0) T2 )
oF . df . B¢, . @ 3¢

oy DY) = 5;(¢(z,y)Ja—;(w,y) + a—i@(%u))%(z,y'}

19



7

oF _0f 04 010
Bz Oudz v Oz

Shortly:

OF _0f8¢1 01942
By oudy vy

i be functions of one variable
function of two variables u, v and let 't’"’? : : 7
z axf:: tb?:z};e; zﬁ composite function G is defined by its function value: ...
G(z) = f(z,¥(2))

i i iable and [z,¥(z)] € -
Find the expression of 4€ | (Functions g, are assumed d.l?'erentm e and [z, ¥(z)

D(g) if = € D(¥)-)
Solution: Using the Chain rule we get:

: i) dy
4 4y 2 Lo pe) 1+ ¥ Z
. &) = Liavta)) + G v @)
or shortly:
4 O Uy

T

1.4.15. Higher order derivatives. Let the function f of n variables z1,%2, ..., Zn

have a partial derivative -gf: in subset M, k € {1,2, ...,n}. This partial derivative is

also a function of n variables. If there exists a partial derivative of this function, 1.e.

3
2(2£)
azl i
in some set Mz C M then it is called a partial derivative of the second order, and it
in sor o f

is denoted by

le{1,2,..,n}

oA i FI ark=1).

anazk o -6_37,‘

‘ i ivati scond order of
1.4.16. Example. Find the 2:a.ll partial derivatives of the first and sécond order

the function f : f(z,¥) = eV,
Solution:

6 zy? _a_f_ = y?
-a—‘i(x,y) =y ay(z,y) €V 2zy,

20

E%(z, y) - e"zy“, %(z,y} = e"’z2xy 2zy + V2 = 2ze”'2(2xy2 +1),
>*f
Oyoz

3%("'-”) = &'y 20y + ¢V 2y = e (zy” +1)

(z,y) = e 20y y® + €™ 2y = 2ye™ (ay? +1),

Function f and all partial derivatives of the first and second order are defined and
continuous in Ej.

1.4.17. Remark. By analogy, we can define partial derivatives of the third order
etc.

" 5 2 2 :
In the previous example we derived %.f; = ';Ea% , but in general 5 z’a[“ # ;9:;, '

The next theorem states the sufficient conditions which ensure that partial derivatives
differing by the order of differentiation define the same functions.

14.18. Theorem. Let function f have partial derivatives 3‘?,!:, az‘ ykl=1.2 . .n
k # ! in a neighbourhood U(A). Let 52— be continuous at point A. Then there
. 2 '
exists ﬁ%gx_.(“l) and
ot fiod
Oz 0z AL Oz10z; ‘A.)'

5. Gradients, directional derivatives.

Gradients. If function f of n variables denoted by z;,z3,...z, has all its
ial derivatives at point A, then the vector

o, .. o af g

3::1 (A): 332 (A)1 ey Tu(A) €E,

led the underbargradient of function f at point A, and it is denoted by
(grad )(4), (VA)(A), (gredf)las  Vila-

e gradient of a function f exists at points of some set M, the vector function given
the relation ®(X) = (grad f)(X), X € M is called the gradient of a function f
it is denoted
gradf or Vf.
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1.5.2. Directional derivatives. In this paragraph we will generalize the notion of

ial derivative. ~
¢ pmlt::at f be a function of n real variables T1,Z2, .-y Zn, A =ay,az,. an) be some

given point A € E, and 3= (s1,32, wn8n) # O a given vector. We denote by S

§ S _(nsm s
5= (313325---5'1) Z'E = (‘ﬂ’ Ig],..., L‘_ﬂ)

If there exists the limit , |
—' - Snt _f 41,82, 8n
li f{A+St)_f(A) =71imf(‘11+51t,02+52ta :an+ n) (
¥ t t=0

t

t—0

7 at point A, and it is denoted

it is called the directional derivative of f in direction

by %{;(A).

5 AHS
Fig. 4.

L.5.3. Remark. It is clear that this definition is a general:ization oi_" the notion ofua;.
pa.rtml derivative. Indeed, if we choose in this definition for instance &= (1,0,0,...,

we will get the definition of %(A).

is also clear that this definition is identical with the definition of

k. It 118 i _ ‘
e v nction of one real variable t at point 0:

the derivative of the following fu

f(a; + Sit,az + Sat, a0 Snt)

22

This is a composite function of function f and a vector function @, the value of which
is defined by the formula :

®(t) = [a1 + Sit,az + Sat,...,an + Sat].

Assuming differentiability of f and using formula (I.4.4) we get

af dd
274 == 0)=
_Of pHart$it) o Of dlatSit) O g dlan+Sat)
=g A O+ g (A=) +.. + () === (0) =
= :7{(:4) 51+ :T’;(A) Sz 4 ..+ %{A) Sa = §-(grad f)(A).

Hence, assuming the differentiability of a function f at point A we derive a formula
for the directional derivative at point iA.:

of .\ _ & (grad f)(4)
() = LA

131
I.5.5. Remuk. Because @ - b = |&'||3f cos a, where a is the angle between @, b we
get:
Of 4y _ 3 (grad f)(4) _

Thus, if the angle a between (grad f)(4) and § equals zero, the directional derivative
is maximal. i.e. the gradient at a point is the direction in which the increment of the
function (in a sufficiently small neighbourhood) is maximal. g

1.5.6. Example. Find the directional derivative 3£(A4) if A =[1,2], §=(1,1) and
f: flzy) =2 +ay.
olution: We define the unit vector § :
£ L1 0t
= V12412 =3, §=2_1 (.__’_)
sy R R Wy,
- Further, we get expressions for the partial derivatives of f

. .. These partial derivatives are defined and continuous in E,. Thus, function f is
erentiable at each point of E;, in particular at the point A = [1,2]. Hence,

% a) = 5= ff o _,1 1 3
%(A)—(Sra.df)h = 33A51+6y‘A52_4\/§+1‘\7§—7'§-
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