10. C is the circular cone with the radius of its basistr =a >0 a.nd thf: hc%ghb h> U
Surface o is the boundary of C. The planar density of the mass dlStrl!)utIOI). on o is
p = const. Evaluate the moment of inertia of 7 with respect to the axis of cone C'.

11. Evaluate the flux of vector field f through surface o.

o) f(z,y,2) =yi—zit+zk, o ={[z,y,2] €Esj 2= 4—a2—y?/9,y 20,220},
o is oriented so that the angle between its normal vector (at any point) and the
vector k = (0,0,1) is acute (i.e. less than 7/2).

b) f(z,y,2) = (0, 0,y), o is the triangle with the ve_rtices A=10,0,0, B= [5,0_, 1],
C = [1,4,1], oriented so that the angle between its normal vector (at any point)
and the vector k = (0,0,1) is acute.

o) f(z,y,2)=zi+yj+ zk, o is the cylindrical surface 224y* =9, 0<z<4,
oriented to the interior of the cylinder.

d) f(z,y,2) = (z%,y%,7%), @ is the part (corresp?nding; to z 2.0) of the sphere
with its center S = [0,0,0] and radius r = 2, oriented so that its normal vector
at the point [0,0,2] is n = (0,0, 1).

e) f(r,y,2) =zi—=zj+ yk, o is the parallelogram A = [0,0,0], B = [0,3,8],
C=[-1,4,5, D=[-1, 1,2], oriented by the normal vector n = (1,-1,1). i

f) f(m,y,z) = (ZZ_yZ.‘ y2—221 z2’_$2)' o =o01Urgs, 01 = {[m!y'n[]] € Eg; m2+y <
1, 520, y20}, op={[z02 €By e +22 <1, 220,22 0}, the normal
vector to og is n = (0,-1,0).

g) f(z,9,2) = zi+yj—2ek, o= {lnyz By y=9- Vil + 2%, y 2 3},
n-j<o0.

B) £(z,9,2) = (&%9%, %), o= {[&,v,4] € Bs; /16 +2%/4=1, 220,05z 2
3}, the normal vector n at the point P =[1,0,2] is n = (0,0,-1).

i) flz,y,z)=cityi- zk, o =K{[$,y,z} €Esy 2 +yP+ei=4 2 0}, the
normal vector n at the point P = [2,0,0] is n=i= (1,0,0).

D) fz,y,2) = (5y), 0= {lz,y,2] EEg; s+ 2 =2, a? 4 y* < 4}, the normal
vector is n = (1,0,1)/v2.

12. Evaluate the flux of vector field f through the closed surface a. If it is possible,

apply the Gauss-Ostrogradsky theorem. -

a) flz,y,7z) =zityi+ 2k, o is the sphere with the center at the point Sp =
[z, Yo, 20] and radius r =a >0, oriented outward.

b) flw,y,2) =yi+zi+ zk, o is the sphere with the center at the point Sg
[z, Y0, 20] and radius r = @ > 0, oriented outwaxd.

il

¢) f(z,y,2) = (a?,9%,2%), o is the sphere with the center at the point Sp
[0, Y0, 20] and radius r = a > 0, oriented outward.

d) flaz,y,2) = (y,2%,—2), o isthe boundary Qf the set D = {[z,v,2] € By; x? +
y? <a?, —a<z< a} (a >0), o is oriented to the interior.

e) f(z,y,2) = (2?,9%,2%), o is the boundary of the set D = {[z,y,2] € E3; —2<
2 <4—g?—y? 2?#y? <4}, ois oriented to the interior.
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f) f(z,y,z) = zi+yj+ 2k, o is the boundary of the set D = {[m,y,z_] €
Eg; P +22<at, 0<a< 3}, o is oriented to the exterior.

g) f(z,y,2) = (2°,2), oisthe boundary of the set D = {[z,y,z] € Es; 2?4y <
z < 4}, o is oriented to the exterior. .

h) f(z,y,2) = 2eyi—y*j+2zk, o= {[z,5,2] € Es; 2[4+ 4?/4+2*/9=1}, ¢
is oriented to the interior.

i) f(z,y,2) = 2®i+ %] + 2%k, .o is the boundary of the set D = {[z,y,7] €
Es; a2 +y* +2° < a?, y >0} (a >0), ¢ is oriented to the exterior.

i) f=(x—1,y+2,2), ¢isa closed surface in E3, oriented outwards, such that
ma(Int o) = 5. :

13. Evaluate the circulation of vector field f around the closed curve C. If it is
possible, apply the Stokes theorem. :

a) f(z,v,2) =(y,2,¢), C is the intersection of the cylindricel surface 2* +y* =4
and the plane z + z = 0. C is oriented so that its unit tangent vector at the
point [2,0,-2] is 7 = (0,1, 0).

b) Brga) = Gupnsal, 0= llngal &8y o 4u= 1, 32 £ =1}, Cis
oriented in accordance with the surface A = {[z,y,2] € Eg; z+y =1, y*+22 <
1} and the orientation of A is given by the normal vector n=(1,0,1)/+2.

¢) flz,y,2)=(z+1)i+(z—y)j+yk, Cisa circle which is the intersection of the
sphere z?+ y? + 2% = 2 with the plane z+y+.2z = 0. . C is oriented clockwise
as viewed from the point [0,0, 10].

d) f(z,y,2) = (—y/(a? +v2), »/(z? +17), 22), Cisacircle z? +y? = a? (a > 0),
z=h (h >0), oriented counterclockwise if viewed from the point [0, 0, 2h].

L

VI. Potential and SoleI‘lo.i{dal Vlelc't‘o‘.'rﬁ
“Field or

VIL.1. Independence of the line integral of a vector function on the‘path.
Potential vector field. ' '

VI.1.1. Independence of the line iJﬂ:é:g,'fra.l of a vector function on the path.
Let f be a k-dimensional vector field in domain D C E; (for ¥ = 2 or k& = 3).
‘Suppose that for any two curves'Cy and Cj in D, such that i.p.Cy = i.p.C, and
t.p.Cy = t.p. O3, the line integrals fC‘x f.-ds and [ f-ds exist and are equal.
Then we say that the line inteqral of f does not ahepevrwl2 on the path in D.

VI.1.2. Theorem. The line intt;gfal of vector function f does not dépend on the
. path in domain D C Ei (for k = 2 or k = 3) if and only if the circulation of f

around every closed curve C in D is equal to zero.
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Proof: a) Suppose at first that the line integral of f does not depend on the path
in D, and C is a closed curve in D. Then C can be decomposed to the union of two
curves K; and K such that ¢.p. K3 = t.p. K2 and t.p. Ky = 1.p. K. Putting Cy = K;
and Oy = — K3, we get two curves in D with the same initial and terminal points. The
independence of the line integral of f on the path implies that Jo frds= Jo, £ ds.
This implies

ff-ds:] f-ds+,f f-ds = f‘dS“‘f f-ds = 0.
C Ky K, Cy Ca

b) Suppose now that the circulation of f along any closed curve in D is zero.
Let ¢ and C be two curves in D such that i.p. Cy = i.p.Cy and t.p.Cy = t.p.Ca.
Suppose for simplicity that curves C and Cy do not have any other common points,
i.e. they do not intersect or touch at any other points. Then the union C' = C1U(—C3)
is a closed curve in D and so the circulation of f around C' is zero. This implies:

/ f—ds:[ f-ds+ f-ds = f-ds
(o cyu(—Cs) Ca Cs

A similar approach can be used in the case that the curves Cy and ' have more
common points than their initial and terminal points, and it can also be proved in
this case that the line integrals of f on €} and C are equal.

VI.1.3. Potential vector field. We say that the vector field f in domain D C Eg
(fork=2or k= 3) is potential ficld in D if there exists a scalar field  in D such
that

f = gradp

in D. Scalar function ¢ is called the potential of £ in D.

VI1.1.4. Remark. Recall that

dp O : dp Op .
grad ¢ = (:9%, -3—(5) (if &=18), grad ¢ = (6_:’ vé%, a—i) (if k= 3).

1t is quite obvious that if f is a potential field in domain D and D' is a domain
quch that ' C D then f is also a potential field in domain D',

You will see later (in paragraph VI.2.4) that e.g. gravitational and electric fields
are examples of potential fields.

A scalar funetion ¢ which is a potential of a potential vector field f has some
properties which are in some sense analogous to the properties of an antiderivative.
For example: :

Iff isa potentia‘fl vector field in domain D C Ej then its potential ¢ is unique up’

to an additive constant.
This means that:
a) w+c is also a potential of £ in D for every real constant c.

b) Any other potential ( of f in D differs from p at most in an additive constant.
In other words: If ¢ is another potential of f in D then there exists a constant
¢ such that ( =p+c¢ inD. .
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Assertion a) is very simple — the equation grade =f in D immediately implies
that grad(p+c)=1f and so ¢ + ¢ is also a potential of f in D.

Assertion b) is also quite obvious: If ¢ and ( are two potentials of f in D then
f=grady and f = grad( in D and so grad( — grad ¢ = grad (¢ — ¢) = 0. However
the only function whose gradient is zero in domain D is a constant function. This
implies the existence of a constant ¢ such that ( —¢p =c¢ andso (=¢+¢ in D.

Anlother analogy between the potential ¢ of a potential vector field and the
antiderivative to a function of one variable is the similarity of formula (IV.1) (see the
next theorem) and the Newton—Leibnitz formula (II.6).

VI.1.5. Theorem. If f is a continuous and potential vector field in domain D, ¢
is a potential of £ in D and C is a curve in D then

fc £ i =oln O —wlin ) (VL)

Proof: Sinceis apotential of f in D, f isequal to grady in D. Suppose
that C is a simple smooth curve in D and P is its parametrization defined in the
interval {a,b) such that curve C is oriented in accordance with P. Let us denote by
z(t), y(t) and z(¢) the coordinate functions of parametrization P. Then

) b . b
/;f-ds = /gra,dtp-ds = /u‘gr&dga(P(t))-P(t) dt = /ﬂ (g—(':(z(t),y(t),z(t)),
i
22 (w(0) w0 20))s G (el ule) 2(0)) - (600 0, 306) =
bra
= [ [5G0, ) + F(e0,u(0200) ie)+

O 11
+F2EO.0,20) 20)] & = [ 2 o(ele),v(e)2(0) b =

= (2(b), y(6), 2(8)) — ¢(z(a), y(a), 2(a)) = @(t.p.C)— p(i.p.C).

The same equality can also be proved in the case when C is a simple piecewise—smooth
curve.

The next theorem is perhaps the most important theorem in this section.

VI.1.6. Theorem. Suppose that f is a continuous vector field in domain D C Eg
(for k=2 or k = 3). Then the next two conditions are equivalent:

a) f is a potential vector field in D.
b) The line integral of f does not depend on the path in D.

Proof: Theimplication a) = b) is the consequence of formula (VI.1).

) Let us now prove the opposite implication, i.e. b) = a). Suppose that condition
b} is fulfilled. Let us denote by U, V and W the components of f. Choose a point
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A € D. The point A was chosen arbitrarily, but we take it as a fixed point from now.
Let X = [z,y,2] be any other point of D. Let us define

lt,o(w,y,z) = j;f»dg (VL2)

where C is a curve in D such that i.p.C = A and t.p.C = X. (It follows from the
independence of the line integral of f on the path in D that the value of ¢(z,y,2)
does not depend on the concrete choice of the curve C' connecting the points A and
X = [z,vy,2].) We claim that grady =f in D. To prove this, it is sufficient to show
that i
ap
dz
Let us prove for example the first of these equalities. Using the definition of the
partial derivative of ¢ with respect to ¢ at point X = [z,v, z], we obtain

Ay B (et Ry, 2) - e(z,y,2)

k2l = L = 1 ;

Bz %) = gty = lim h
@(z + h,y,z) can be expressed as the line integral of f on the simple piecewise —
smooth curve which is the union of € and the line segment XY leading from point X
to the point ¥ = [z + h,y, 2z]. The unit tangent vector on XV is ¥ = (1,0,0). Thus,

we get

Ay .1 .1
EJ?(X) - P——»Inﬁ h[_/;;uxyf ds__/(;f'dsJ k—0 h XY

1 1
= Jim E]Xy(U,V,W)-(l,O,O) ds = lim +

%f(X):U(X), %E(X)mV(X) and (X) = W(X). (VL3)

I
5
|
—-
2.
w
Il

Uds = U(X).

The equalities in (V1.3) show that f = grady in D and so the vector field f is
potential in D.

VI.1.7. Remark. If f is a potential vector field in domain D C Ey (for k = 2
or k = 3) then the line integral of f is independent on the path in D (by Theorem
VI.1.6) and this means that the circulation of f on every closed curve in D is zero
{by Theorem VI.1.2). If £ has a physical meaning of a force then we can say that the
work done by force f over every closed curve C is zero. Due to this fact, potential

vector fields are also often called conservative frelds.

The path independence of the line integral in potential vector field f has an
important physical meaning: It says that the amount of work done by force f in
moving from point A € D to point B € D is the same for all paths in D, leading
from A to B. This is known to hold for example in a gravitational or an electric field,
where the amount of work it takes to move a mass particle or a charge from point
A to point B depends only on the position of A and B and not on the path taken
between A and B.

Since the value of the integral fc f-ds of potential vector field f depends only
on the position of the initial point and the terminal point of curve C, this-integral is

often written as
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B
/f-ds:f f-ds
’ [ A

where A = 4.p.C and B =¢.p.C.

We have shown the proofs of the last two theorems because they are very inst-
ructive and their ideas can also be used in other situations, Formula (VL.1) provides
a very simple way of evaluating the line integral of a potential vector field when the
potential ¢ of f is known. On the other hand, the idea of the proof of Theorem VI.1.6
shows a method of finding a potential ¢ of a vector field f provided that it is known
that f is a potential vector field. This approach will be applied to concrete example
(see paragraph VI.2.1). We will also show another method of finding a potential  of
f - see examples VI.2.1., V1.2.2 and VI1.2.4.

We have seen that the potential vector field-f in domain D has interesting and
useful properties — especially thé"t its line integral does not depend on the path in
D (see Theorem VI.1.6) and moreover, its line integral can be evaluated by means
of formula (VI.1) (see Theorem VI.1.5). It is therefore very important to be able to
recognize whether a given vector field in domain I is or is not a potential vector field
in D. The next paragraphs will deal with this question. We will distinguish between
the two-dimensional case (see paragraphs VI.I.8-VIL.1.13) and the three-dimensional
case (see paragraphs VI.1.14-VI1.1.18).

VI.1.8. Theorem. (Potential field in E; — the necessary cdndif_ibn.) Suppose
that f = (U,V) is a potential vector field in domain D ¢ E, Suppose that the
components U and V' of f are continuously differentiable functions in D. Then
v _ou _ 0 inD
5s oy inD. (VI14)
Proof: lIf‘(p is a potential of f in D then ' f= (8yp/dz, 180 /By). -Hence we héve
6(p i c’)tp‘ Ty Ml b 3 ey e
- o Ty
in D. This form of I and V, together with the information about the continuity: of

the Partial. derivatives of U and V in D (which means the continuity of the second
partial derivatives of ¢ in D), easily implies condition (VL4). ‘

VL.1.9. Remark. Condition (V1.4) is a necessary but not a sufficient condition. This
means that the two-dimensional vector field f in domain D C E; whose components
are continuously differentiable functions in D can be a potential vector field in D
only if condition (VI.4) is fulfilled, but on the other hand the validity of condition
(VI.4) itself does not guarantee that vector field £ really is a potential field in D. We
can demonstrate this through the next example.

VL1.10. Example. The vector function f = (U,V) = (—. - Yy 5y 5 T )
1 Y 0 2
satisfies condition (VI.4) in the domain TEHyE et 4y

D= {[E,Q]CEQ; o + 1% > 0}.
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(Verify it for yourself!)

Let us now evaluate the circulation of f around the circle Cy: 2% + y? = 2
(where r > 0), whose orientation is positive (see paragraph IV.5.3). It can easily be
checked that the mapping P:z = ¢(t) =r cos t, y = ¢(t) = r sin t (for t € (0, 27))
is a parametrization of Cr whlch a,lso generates the positive orientation of €. Thus,
we have

Yy : T
. = = dy =
fcrf ds j{« x2+y2dx+x2+y2 Y
2 2w
:[ [—rsmt(—rsmt)+ trcost] dt=[ dt = 2m.
0 0

Thus, although the components of f satisfy condition (VI.4), f is not a potential
vector field in D because we have shown that the circulation of f around at least one
closed curve in D is different from zero, (See Theorem V1.1.2.)

QOur next goal is to formulate sufficient conditions which will guarantee that
a given two—dimensional vector field will be potential in domain D C E,;. We will
therefore need the notion of a so called simply connected domain in Ej:

VI.1.11. A simply connected domain in E;. Domain D C E, is said to be
simply connected if each closed curve ' in D can be contra.cted to a point in D
without ever leaving D.

A simply connected domain in Es can also be defined as such domain D C E,
that the interior of every closed curve C in D is a subset of D.

Roughly speaking, domains which have bounded “holes” (and look like a Swiss
cheese) are not simply connected, while domains which do not have such holes are
simply connected. The examples of domains which are simply connected are: the
whole plane E,, the half-plane, E; minus a half-line, interiors of closed curves, etc.
Examples of domains that are not simply connected include: E; minus one point
(e.g. domain D from example VI.1.10), E; minus a bounded subset and an open disk
minus,one point.

VI.1.12. Theorem. (Potential field in E; — sufficient conditions.) Let
a) D be a simply connected domain in Eq and

b) f = (U, V) be a vector field in D, whose components U, V are continuously
* “idifferentiable functions in D and they satisfy the condition

ov _ou
Oz Oy
Then f is a potential vector field in D.

=0 inD. (V1.4)

Proof: Wewill prove that f is a potential vector field in I if we show that the
circulation of f around every closed curve in D equals zero. (See Theorem VI.1.2.)
Thus, let C be a closed curve in D. Since D is simply connected, Int C' C D. Applying
Green’s theorem (see paragraph IV.5.5), we obtain
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BV ou
f-d w:tjf dzdy = 0.
f g Int C 31) Y

(The “+” sign is valid if C' is positively oriented and “—" holds if C is negatively
oriented. However, since the integral on the right hand side equals zero, the signs are
not important.)

VI.1.13. Example. We have seen in example VI.1.10 that the vector field

T
=V = (- mrp)

is not potential in the domain D = {[z,y] € Ey; z* +y? > 0}. However, it is
potential in any sub—domain D' C D which is simply connected! For instance, f is
potential in the upper half-plane D' = {[ z,y] € Eg; y > 0} This follows immediately
from Theorem VI1.1.12. (The validity of condition (VI.4) was already mentioned in
example VI.1.10.)

Thus, we know that vector field f is potential in domain D', but we do not know
the potential ¢ of f in D'. We will deal with methods of finding the potential in
Section VI.2, and we will also return to this example. (See example VI.2.2.)

The following paragraphs deal with three-dimensional potential vector fields.
However, you can find many analogies with the contents of paragraphs VI.1.8-VI1.1.13,
which deal with two-dimensional potential vector fields.

VI.1.14. Theorem. (Potential field in E; — the necessary condition.) Suppo-
se that f is a potential vector field in domain D C Es. Suppose that the components
of f are continuously differentiable functions in D. Then

curlf = 0 inD. (VL5)

P roof: Condition (VL5) is an immediate consequence of formula (V.7) and the
fact that f can be expressed in the form f= grady for some scalar function ¢ (the
potential of f in D).

VI.1.15. Remark. Suppose that vector field f has the components U, V and W.
Writing curl f in components (see paragraph V.5.2), we can observe that condition
(VL5) says the same as the three equations

aw v au  aw oV au
—éy——a— ) 5;—*5;—, 'E;—Fy-—o. (VIG}

Tt can be observed that Theorem V1.1.8 (dealing with the two-dimensional case)
is a consequence of the more general Theorem VI1.1.14. Indeed, if we have a two—
dimensional potential vector field (U, V) in domain D C Ey then f = (U,V,0) is
a three dimensional potential vector field in the three-dimensional domain D x R.
Applying Theorem VI.1.14 now to this vector field, writing condition (VL5) in the
form of equations (V1.6) and using the fact that I/ and V do not depend on z, we
can see that the first two equations in (VI.6) are automatically satisfied and the third
equation in (VI.6) is identical with (V1.4).
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VI.1.16. Remark. Analogously to condition (V1.4), condition (VL5) is the nec-
essary condition, but it is not a sufficient condition! This may be seen from the
three—dimensional version of example V1.1.10: The vector function

Y T
f = (U,V,W) = (____m2+y2, g 0)

satisfies condition (VL5) in the domain D = {[z,y,7] € Eg; 2 +y* > 0}, but
vector field f is still not potential in D, because the circulation of f around the circle
Cr: 2’ +y® =r? 2z =0 (where r > 0) is either 27 or —2m, in dependence on the
chosen orientation of C. (This can be computed similarly as in example V1.1.10.)

However, condition (VI.5) becomes a sufficient condition if it is completed by
the assumption about the form of domain D.

VI.1.17. A simply connected domain in E;. Domain D C Ej; is said to be
stmply connected if each closed curve C in D can be contracted to a point in D
without ever leaving D.

VI1.1.18. Theorem. (Potential field in'E; — sufficient conditions.) Let
a) D be a simply connected domain in Ez and
b) f be a vector field in D, whose components are continuously differentiable func-
tions in D and they satisfy the condition
cwrl f = 0 inD. (VL5)

Then f is a potential vector field in D.

VI.1.19. Remark. A vector field f can also be potential in a domain D which is
not simply connected. However, this cannot be verified by means of Theorem VI1.1.12
(in the two—dimensional case) or Theorem V1.2.18 (in the three-dimensional case).

Theorems VI.1.8, V1.1.12, VI, 1 14 and VI.1.18 will be applied to concrete exam-
ples in the next section.

VI1.2. How to find a potential.

In this section, we will deal with two methods of finding a‘potential ¢ of a
potential vector field. We will explain these methods with concrete examples.

VI.2.1. Example. f= (y?+y cos z+6z, 2oy +sin z+ 5). ‘a) Is f a potential field
in Eo7 b) If yes, find its potential. ¢) Compute the integral fc' f-ds on curve C
which is the part of the parabola y = 2?42 from point [0,2] to point [2, 6].

a) The components of vector field f are continuously differentiable functions and
you can easily check that they satisfy equation (V1.4) in E;. The whole plane E; is
a simply connected domain. Thus, by Theorem VI.1.12, f is a potential field in E;.
Let us denote by ¢ its potential.
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1st method of finding a potential. It follows from the definition of the potential
(see paragraph VL.1.3) that f = grad ¢ in E;. This means that

Bi=y2+ycosm+6$, a—lp=2xy+sinx+5. (VL)
Jz dy
Integrating the first equality in (VL7) with respect to z, we obtain

w(z,y) = 2y’ +y sin ¢ + 32% + Ci(y). (VL8)
(C} is the constant of integration which arose by the integration with respect to z. So
it is a constant with respect to z. However, it can generally depend on y.) Integrating
now the second equality in (VI.7) with respect to y, we get

@(z,y) = 2y + y sin z + 5y + Cy(z). (VL.9)

(C2 is the constant of integration which appeared after the intégration with respect
to y. So it cannot depend on y. However, it can depend on =.) Comparing (V1.8) and
(V1.9), we get

zy’ +ysinz+ 322 + Ci(y) = zy +y5ma:+5y+C’g(z)
3z + Ci(y) = By + Cy(z).

This is satisfied if we put e.g. Ci(y) = 5y and Ca(z) = 3z%. Substituting this either

- to (VL8) or to (VL9) and using the uniqueness of the potential up to -an additive

constant (see paragraph VL.1.4), we get

oz, y) = zy® +y sin = 4 32° + 5y + const. (V1.10)
2nd method of finding a potential. This method follows the proof of Theorem
V1.1.8, and the potential is constructed by means of formula (V1.2): Chaose O = [0,0]
as a fixed point and X = [y, 4] as a “variable” point and put @(zg,yo)="[,f-ds
where C is an arbitrary curve with the initial point O and the terminal point X.
Let us choose curve C' so that the computation of the line integral i as simple as
possible. For instance: Put C = OX' U X'X where OX' is the line segment leading

from point O to the point X' = [2,0] and X'X is the line segment leading from
point X' to point X. Then we have:

go(zu,g,!;?));':: (.[ox;f ]er) (4 +y cos ¢ +6z) dz + (2zy +sin z + 5) dy.

Since y = 0 and z varies from 0 to z¢ on the line segment OX'; we have dy = 0 on
0X' and :

f (y2+ycosm+6w)d:c+(2:cy+sina:+5)dy_= f 6rds = 3.
ox! 0
Further, ¢ = 2y and y varies from 0 to yg on X'X. Hence dz = 0 on X'X and

/ (y2+ycosm+6$)dz+(2my+sin$+5)dy=
XX
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Yo
= f (2zoy 4+ sin zp + 5} dy = Zoye + yo sin zo + Syo.
0

Thus, the value of the potential ¢ at point X is

w(zo,v0) = (fc>x*+~£cfx) (y* +y cos = + 62) dz + (2oy +sin x + 5)dy =
= 3z + 2oyg + Yo sin o + Syo. ‘

Writing [z,y] instead of [zo,%0] and taking into account that the potential is deter-
mined uniquely up to an additive constant, we obtain formula (VI.10).

¢) Using now Theorem VI.1.5, we can evaluate the given line integral:
(2.6]
/f-ds:/ f-ds = ¢(2,6)— ¢(0,2) = 104 + 6 sin 2.
c (0,2]

VI.2.2. Example. We already know from example VI.1.13 that the vector field
t=0V) = (~arm 7yp)

is potential in the domain D' = {[x,y] € Bs; y > 0}. Using the first or the second
method for computation of the potential, we can find that the potential of vector
field f in D'is @(z,y) = — arctan (z/y) + const.

VI.2.3. Example. f = (yz + 22, - y). a) Is f a potential fleld in E27 b) If yes,

find its potential. ‘

a) If we denote by U and V the components of f 'then we can easily compute that
ov _ou
dz Oy

Thus, condition (VI.4) is not satisfied and so applying Theorem VL.1.8, we can see

that vector field f is not a potential field in Es.

=1-2y inE,.

VI1.2.4. Example. It is known from physics that a particle with the mass M at the

point Xg = [z, Yo, 20] generates the gravitational field
(z—za)i+(y—yo)i+(z—2)k

[(z =20 + (y — v0)* + (2 — 20)* |3/

in D= E3; — {Xo}. Since g satisfies condition (VL5) in B3 — {Xp} (Verify this for

yourself!) and the domain B — {X,} is simply connected (Why?), g is a potential

vector field in E3 — {Xo}.

Potential ¢ of g satisfies

g = —&M

dp(z,y,2) s z— 1
s = [(€—20) + (¥ —yo)* + (z — 20 2 P12
Integrating this equation with respect to z, we obtain
kM
Y, Z) = - C ;
p(z,y,2) [z —20)? + (y — )2 + (2 — 20)2]1/2 + Ci(y, z)
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where Cy(y,#) is the constant of integration. Putting the partial derivatives of ¢
with respect to y and z equal to the second and the third components of g and
integrating with respect to y and z, we can obtain the same formulas for ¢, only with
Ca(z,2) or Cs(z,y) instead of C1(y, z). Comparing all three expressions of ¢, we can
see that we can put Cy(y,2) = Ca(z,2) = Ci(w,y) = 0 and so we get the potential
of the gravitational field g in Eg — {Xo}:

&M
[(z =202+ (y = yo)? + (2 — 2 )21/

olz,y,2) = + const.
You can verify that the electric field generated by a charge @ at point X is also
a potential field in E3 — {Xy} and its potential ¢ has a similar form.

V1.3. Solenocidal vector field.

V1.3.1 Solenoidal vector field. A vector field f in domain D is called solenoidal
if its flux through any closed surface o in D is zero. (Note that the flux of f through
surface o was defined in paragraph V.4.2 as [[ f-dp.)

VI.3.2. Theorem. (Solenoidal field in E; — the necessary condition.) Suppo-
se that f is a solenoidal vector fleld in domain D C Ej3. Suppose that the components
of f are continuously differentiable funciions in D. Then

divf = 0 inD. (VL11)

P roof: By contradiction. Suppose that there exists point Xy € D such that
div £(Xo) # 0. We can suppose that div f(Xy) > 0 without loss of generality. It
follows from the continuity of partial derivatives of the components of f that there
exists a neighbourhood U(Xo) C D such that div f > 0 in all points of U(X,).
Let o be a sphere with the center Xy and with such a small radius that ¢ C U(Xo).
Using the Gauss-Ostrogradsky theorem (see paragraph V.6.3), we obtain

/ff-dpz:l:]f div f dedydz
T Int o

where the “4” sign holds if ¢ is oriented to its exterior and the “—" sign holds in the
opposite case, The integral on the right hand side is positive because Int ¢ C U(X,)
and divf >0 in U(Xy). Thus, the flux of f through the closed surface o is different
from zero and so vector field f is not solenoidal in D. This is the desired contradiction.

VI1.3.3. Remark, Analogously to conditions (VI.4) and (VL5), condition (VI1.11)
is the necessary condition, but it is not a sufficient condition! This may be shown
through the following example: The vector function

_ zityjtzk

T [y 2R J3/2
satisfles condition (V1.11) in the domain D = E5 — O where O = [0,0,0]. (You can
check this for yourself.) However, f is not a solenoidal field in D. We can prove it
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so that we show that its flux through some closed surface o in D is different from
zero. Thus, let o be for instance a sphere with the center O and radius R, oriented
to its exterior. The flux of f through ¢ cannot be evaluated by means of the Gauss—
Ostrogradsky theorem (see paragraph V.6.3) because the components of f do not
satisfy the assumption of this theorem. (They are not continuous at point O which
belongs to Int o.) However, the surface integral [[.f-dp can be computed by
means of parametrization P discussed in paragraph V.2.10:

‘z = ¢(u,v) = R cos u'cos v,
y=%(u,v) = R sin u cos v,
z=19(u,v) = Rsin'v
for u € (0,27), v € { — w/2,7/2). The vector Py x P, is
Py, (u,v) x Py(u,v) = (R? cos u cos®v, R? sin u cos® v, R? sin v cos v).

Using now formula (V.6) and applying Fubini’s theorem II1.3.2, we get

27 w/2
// f-dp = f (f (cos® u cos® v + sin® u cos® v + sin® v cos v) dv) du =
o 0 —7/2 »
2 ™
= / (/ cos v dv) du = 4m.
0 —mf2 e b

Condition (VI.11) becomes a sufficient condition if it is completed by an assump-
tion about the form of domain D:

VI.3.4. Theorem. (Solenoidal field in E; — sufficient conditions.) Let
a) D be a domain in Ey such that if ¢ is any closed surface in D then Int ¢ C D,

b) f be a vector field in D, whose components are continuously differentiable func-
tions in D and they satisfy the condition

divf =0 inD. (VL11)

Then f is a solenoidal vector field in D.

Proof: Let o bea closed surface in D. The flux of f through o can be evaluated
by means of the Gauss-Ostrogradsky theorem and if we also use condition (VI.11),

we obtain
//f dp—:l:/ff divf dzdydz = 0
Inta'

(The sign in front of the triple integral depends on the onentatmn of o. However, it
is not important because the integral is equal to zero.)

VI1.3.5. Example. Vector field f from paragraph VI.3.3 is solenoidal in the domain

G = {[z,y,2] € E3; z > 0}. It can be verified that it satisfies condition (VL.11) in G
and moreover, domain G has property a) formulated in Theorem VI.3.4.
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fﬁ,ﬂxﬂﬁ=(f"V;Zi?'?’”y+zvﬂfii}

VI1.4. Exercises.

1. TFind maximaum domains in Eg in which the given vector field f is defined.
Verify whether f is a potential ﬁeld in these domains. If yes, find the potential ¢

of f and evaluate the integral f [, f-ds.

a) f(z,y) =y* 2ey), A=[1,3], B=[3,2]

b) wy)(‘+;,‘=m%3=mﬂ

o) fa,y) = (a%,y?), A=[0,0,, B=103,3

A=[0,1,B=[L2

‘-e) (IJ)_\/-‘l"“'iy'\/uJ?’ ‘=[1:2]!B={4)_2]

- 2$y)1 A = [_3!219 B= [311]

= (12 v

g) f(I: y) = (xva =+ y)7 A= [OuU]) B= [11 1]

b fey) = F5, =1, B=(62

i) f(z,y) = (% + 2, v* +y2t), A=03,-1], B=[L,5]
i) f(z,y) = (1+y* sin 2z, -2y cos’z), A=[m1], B=[r/2,2]

k) f(z,y)=(1ny—z—z,%+;), A=, B= (12

) fe) = (o + o gy VA ~ 0,1}, = o4
m) f(m,y):%,_A:[U,o],B [02] ' .

n) f(z,y) = (ysinz, y—cosz), 4=[0,1], B=[52]

o) f(z,y) = (cos(2y) + v+, y — 2z sin(2y) +2), A=[0,0], B=[-2,2|

p) f(z,y) = (yeﬁ 2$y)7 A= [2, 1, B= {0,0}

2. Function ¢ is the potential of vector field f in domain D C E;. Find D (a

maximum possible), f and ‘evaluate the work done by vector field f on curve ¢
leading from point A to pomt B

a) ¢z ,y,z)_:cy+mz+yz, 5 -,[ 12 ~1], B =[3,4,1]
b) LP(:D,y,Z):hllx +y +22‘_A1_L,. A:—.l,l,E],B:[—.?.,é,—l]

3. Find maximum domains in E3 in which the given vector field f is defined. Verify
whether f is a potential field in these domains. If yes, find the potential ¢.
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3 e = (L2 ) ) ) = (i L 20)

p 2 3+uﬂ’m2+y2’
—zi—yj+k/2 2e—y  x+2y
C) f(x)y}z):T_yz d) f(-T,'(; ): ($2+y2) $2+y211 Z)

e) f(z,y,2) = (% sin z — 4%, —2ay, 2/ cos z) f) f(z,y,2) = y*i+ 22+ 2%k

z z 1 zityj+zk

. et - LR _ rityirER

g) f{z,y,z2) (z—y’ yHmyln(z y)'i'\/;) ) f(a:,y,z) ;——-————I2+y2+22
1) f(z,y,2) = (e*(y +2°), €”, z¢”) i) 2 = (2 -y, v r+z)

k) f(z,y,z}:( +y2’a:3+y2’2z) 1) fz,y,2) = (m— "_zﬁ-i-y )

4. Find maximum domains in Ea. in which the given vector field f is defined. Verify
whether f is a solenoidal field in these domains.

a) £(z,y,2) = (v, 2%,2%) b) f(e,y,2) = (z—y, 2 — 2,y ~2)
C) f(m,y,z) = (“‘Tl Yy —22:) d) f(z,y,z) = (g-! Az _32’ #_g_)
e) f(z,y,2) = (y, 2, 2*) £) f(z,y,2) = (ey, 1 — 42, y2)
(42, 22, ~y) B
g) fz,y,2) = PPl h) f(z,y,2) = (52%,y — 2, In 2)
e (o e ey
. Y 2) = (z? 4+ ¢ +z2)3/2 ’ (z2 + 92 + 22)3/2’ (22 + 92 + Z2)3/2

a) Show that divf=0 in E;— {[0,0,0]}.

b) Evaluate the flux of f through the sphere with the center at the origin and
radius r = 1, oriented outward.

c) Decide whether f is a solenoidal vector field in Es — {[0,0,0]}. (Why?)

d) Find a domain in E3 where vector field f is solencidal.
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