1.6. Implicit functions.

1.6.1. Examples. Let us assume the equation z? + y? = 1 and the point X =
[zo,%0] = [52@, 3/—5] (Draw the sketch.) It is clear that the equation defines some
function f : y = f(z) in the neighborhood of the point zp = £ , such that f(lC)
£ Indeed, we get from the equatmn y= Vi or y= —\/_T?" Taking into
a.ccount the condition f( £) we get y = f(z) = ++/1 =22, This function has
the followmg properties: :
8 = . c
The functmn is defined in some nelghbourhood o‘f Zp, i.e. in the mterva.l ({—5 &; ;._;2 +
5), (here § = 1 — 22),

If we substitute f(z) into the rela.tlon x4yt e fwe get.a.n 1dent|ty 2+ (f(2))? =
1=1=1

There is at most one such function. (There is.no such funqtmn for instance if we
choose the point A =[1,0] or A =[-1,0]).

The graph of the function f locally cointides with the "graph” of the equation, i.e.
there exists é > 0, such that

{[x,y]e(%—6;§+J)x(§.—5;¥+5) Ty =

m}=

{[my]e(i— Y215 x (£—5£+a) 12+y2=1},

This section deals with the conditions that ensure the existence of such a func-
tion, even if we are not able'to express it éxplicitly from the originally given equation.

Let us assume an another example. There i given the equation
e’ +z — 10 = y.+ tan(y) (1.6.1)

It is easy to see that f(z) = €% + & — 10 is a continuous increasing function for
z € (—o0;+00), R(f) = (—o0;+o0) and function g(y) = y+tany is also a continuous
increasing function on each intervaly € (—F+km; 54km),k € N, R(g) = (—o0; +00).
Due to these properties of the functions f, g it is clear that for every z € (—oo; +o0)
there exists the unique y € (—F; 5-) such that equation (I.6.1) is satisfied. Hence,
by means of (1.6.1) a function ¢y.is defined with the domain of definition D(¢g) =
(—o00; +00) and the range R(¢o) = (—%; ). Since the function value of ¢ is defined
as a solution of some equation and the analytic expression of the function value is
not known, the function is called an implicit function.
If we substitute function ¢g into relation (1.6.1) we get an identity:

Vz € (—oo;+00) : e + z — 10 = ¢o(z) + tan(¢o(z)).
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We can keep repeating k € N : For every z € (—c;o; +00) there exists the unique
y € (=5 +km; 5+ k) such that equation (I.6.1) is satisfied. Hence, by means of this
relation we can define a function ¢; with the domain of definition .D(gb;,) = (—o0; +00)
and the range R(¢¢) = (—=F + km; § + k).

If some point [zo, yo] satisfying relation (1.6.1) is given, then this relation defines
a unique function ¢, such that yo = qSk(zu)

Relation (I.6.1)) can be written in the form F(z,y) = 0. The following theorem

states sufficient conditions which ensure that the relation F(z,y) = 0 defines an
implicit function.
1.6.2. Theorem. Let F be a function of two variables which are denoted z,y. We
suppose that F' and partial derivatives 4=, % are continuous in some neighbourhood
U(A) of the point A = [a,b]. We assume that F(A) =0 and 5y (4) # 0. Then there
are § > 0,& > 0 such that the unique function f is defined in a. Way that satisfies the
following properties:

) b= f(a)

b)Vz € (a—d;a+4d): f(z) € (b—eb+e) and F(z,

c) f,f are continuous in (a—&;a+4d)

d)Vz € (a—b;a+6)

f(z)) =0.

fr(m) - B_QF;E (.'L', f(z)) (1.6.2.)

% (@, £(z))

Moreover, if all partial derivatives of F are continuous in a neighbourhood U(A)
up to the k-th order, then f, f',...f**) are continuous in (a — &;a + 6).

1.6.3. Remark. It is very simple to derive formula (1.6.2.) from a) - ¢). Indeed,
deriving the two sides of identity (see (I.4.4)

Fz, f(2)) =

- we get

e f(@) + S e, @) £1(2) =0, (1:63)

(The left hand side is derived by means of the Chain rule for composite functions of
several variables.) If we calculate f'(z) from this relation we get (1.6.2). Taking into
account a) in Theorem 1.6.2 we get

ge(4).
_ Oz
f( )- %%(A)
Deriving (1.6.3) we get
2?:: ff( )_{_ a : (fl( ))2 ”{ )=O. (1.6.47)
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From this relation we can express f"(z).
We can calculate higher order derivatives of an fmplicit function in a similar way.

The next theorem states sufficient conditions which ensure that the relation
F(z,y,z) = 0 defines an implicit function. :

1.6.4. Theorem. Let F be a function of three variables which are denoted z,y, .
We suppose that F and partial derifatives %{-, %, % are contx'nuogs in some neigh-
bourhood U(A) of point A = [a,b,c]. We assume that F(A) = 0 and 2E(A) # 0.
Then there are § > 0,¢ > 0 such that the unique function f is defined in a way that
satisfies the following properties:

a) ¢= f(a,b) L
b) V[z,y] € (a—8;a+8) x (b—4; b+4) : F(2,y) € (c—&; c+¢) and F(z,y, f(z,y)) = 0.
e} ik, %f, ‘,?5 are continuous.in (a — §;a + &) x (b—§;b 4 §)

d) V[z,yl € (a—&;a+8) x (b—&;b+4)

6f ‘;F(E,y,f(é,y)) Bf aa (z1y|f($|y))
(z,y) == y  ope (T y) = —e—— 2
oz v) -—-gf(z.y. f=z.y)) Oy (=) —‘;f(x.y,f(z,y)) F8)

Moreover, if all partial derivatives of F' are continuous in a neighbourhood U(A)
up to the k-th order, then all partial derivatives of f are continuous in (a — §;a +
8) x (b— &b+ 9).

1.6.5. Example. Prove that the equation F(x,y,2) = 2° —zy + yz + yP -2 =
0 in some neighbourhood of the point A = [1,1,1] defines function f such that
F(z.y, f(z,y)) = 0 in some neighbourhood of point [1,1], and calculate the partial
derivatives at this point. 2

Solution: We use the previous theorem. Function F(z,y,z) = 2* —zy + yz + y* — 2
is polynomial, so it is defined and continuous in E; and all (first order) partial
derivatives are also defined and continuous in E;. Substituting 4 into the equation
we get F(1,1,1) = 0. For the partial derivatives we get the following expressions:

oF oF oF
or - el - 2 _
Jz (Iﬁyvz}_ Y, 6y($;yaz)— z+z+ 3y°, —az(:t,y,z)—322+y

Substituting the point 4 = [1,1,1] into these expressions we get:

oF
E(z.y.z) =440

aF aF
B—(I-.%Z) = -1, —(z.y.2)| =3,
i A A A

dy

Thus, all conditions of the theorem are satisfied. The unique function fz,y) defined .
and continuous in some neighbourhood of [1,1] exists, such that f(1, 1)=1,

F(z.y, f(z,¥)) = 0 in some neighbourhood of [1, 1]. Function f has continuous partial
derivatives in some neighbourhood of [1, 1]. Using the formulas from d) of the theorem
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for partial derivatives, substituting [z,y] = [1, 1], taking into account f(1,1) =1, we
get:

8 1y BLLALID o ERLY L) 3
97 T UELLALY)  F LY 3P 4yl 4
g(l - _ $0,1,50,1) =_%§Z(1, L1) _ —(-z+2+3") = g
& T EMLLALY)  S(LLY) e

1.7. Local extremes.

1.7.1. Remark. In order to distinguish between extremes of function f on a set and
local extremes, an extreme of f on a set is often called a global eztreme of f on a set
or an absolute extreme of f on a set. A maximum on a set is therefore called a
global mazimum of f on a set or an absolute mazimum of f on a set. Analogously,
we can define a global minimum of f on a set or an absolute minimum of f on a set.

1.7.2. Local maxima and local minima. We suppose that f is a function of n
variables z1, 23, ..., 2, defined in some subset D of E, and A is an interior point of
D.

If there exists a reduced neighbourhood R(A) C D such that VX : X € R(A) =
f(A) > f(X), then we say that function f has a local mazimum at point A. More-
over, if there exists a reduced neighbourhood R(A) C D such that VX : X € R(4) =
f(A) > f(X), then we say that function f has a strict local mazimum at point A.

A local minimum at a point and a strict local minimum is defined by analogy.
If there exists a reduced neighbourhood R(A) C D such that VX : X € R(4A) =
f(A) < f(X), then we say that function f has a local minimum at point A. More-
over, if there exists a reduced neighbourhood R(A) C D such that VX : X € R(4) =
f(A) < f(X), then we say that function f has a strict local minimum at point A.

Local maxima and local minima are called local eztremes. It is assumed in these
definitions that point A4 is an interior point of function f. These definitions can be
extended in some sense to other cases.

1.7.3. Local maxima and local minima with respect to a set. We sup-
pose that f is a function of n variables z,z3,....z, defined in some subset D of
E, and point A € D. If there exists a reduced neighbourhood R(A) such that
VX : X € RA)nD = f(A) > f(X), then we say that function f has a
local mazimum with respect to set D at point A.

Moreover, if there exists a reduced neighbourhood R(A4) such that VX : X €
R(A)ND = f(A) > f(X), then we say that function f has a strict local mazimum
with respect to set D at point A.

By analogy, we can define a local minimum with respect to a set at a point, and
a strict local minimum with respect to a set at a point.
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1.7.4. Theorem. Necessary condition of local extremes of differentiable
functions. If function f is differentiable at point A € E,, and f has a local extreme
at point A then

(grad f)(4) =

1.7.5. Critical points. An interior point A of the domain of a funct:on f
where

(grad f)(4) = O

or where at least one partial derivative at point A does not exist is a so called critical
point of f.

An interior point A of a set G which is contained in the domain of a function f where

(grad f)(4) =

or where at least one partial derivative at pc_xil“lt“.:‘iﬂ':ckloes not exist is called a critical

_qoint of f on set G.

1.7.6. Remark. Theorem I.7.4 implies that the only points where a function f can
ever have a global extreme on a set G are critical the points of function f on set G
or the boundary points of set G.

1.7.7. Theorem. Sufficient condition of local extremes of differentiable
functions of two variables. Let f be 4 ‘function of two variables, and let f be
differentiable at point A and (gra.df)(A) ‘0. We assume that there exist all partial
derivatives of the second order inn'a ne.!ghbou.rhood U(A) which are continuous at
point A. Denoting

L, "I )
Aa(4) = Sf’ %20 | )= Lo,
e (4. SE)

we have:

a) If Ay(A) > 0 and A,(A) > 0 then function f has a strict local minimum at
point A.

b) If Ag(4) > 0 and A (4) < 0 then function f has a strict local maximum at
point A.

c) If Ay (A) < 0 then function f has no IocaJ extreme at point A.

1.7.8. Theorem. Sufficient condition of local extremes of differentiable
functions of n variables. Let f be a function of n variables, and let f be differen-
tiable at point A and (grad f)(A) = ©O. We assume that there exist all partial
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derivatives of the second order in a neighbourhood U(A) which are continuous at
point A. We use the following notation:

&*f
'aT%(A)'I ax a:: ( )) "y azizaxt(A)
*f &f
B e A
Ax(A) = Bzaaxl(‘é)’ f"?iF ) : Brzam( , fork=1,2,..,n

i A & f
szaa:l‘ ! 6::;,8:5

@A), %(A)

s cacpaby s

Assum.mgA;‘(A) #0 fork—l 2,...,n we have:

a) If Ag(A) > 0 for k = 1,2,...,n then function f has a strict local minimum at
point A. :

b) If (—1)*Ag(A) > 0 for k = 1 2,...,n then function f has a strict local maximum
at point A. .

¢) In other cases function f has no local extreme at point A.

1.7.9. Example. Find all local extremes offuuctmn f f(z %Y, z) = g’ +3z +3y -
zz — zY.

Solution: Function f is defined in Es We find all critical pomts of f. We ca.lculate
the partial derlva.tlves

IR

of _ of ER of -6z —
E(x,y.Z)—Zz-—y—z, ay(z,y,Z)—ii A I ™ (z,y,Z)—Gz‘ z

The partial derivatives are deﬁ.ned and continuous in Ej. Using the Decessary condi-
tion of a local extreme, we solve the system (grad f)(X ) 0 ie.

2z — y — z =0
3 - =z = 0
6z — z =0

From the second equation we get =z = 3, substituting ﬂﬁé value into the third
equation we get z = 3 and, finally, the first equatmn 1mphes y = 3. Thus, the
unique critical point of f is the. pomt A=[341,1]
Now we will use the sufficient. condition of the existence of .an extreme. We
calculate all partial derivatives of the second order:
&f *f _f _
@(x,y;z) = 2: ayax(z’yiz) . azax(xay:z) = _13

2 62 .
?;y_{'(xvy:z) =) aaz_afy'(zay)z) = 0) #(z’y,z) =6
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—

=7...11 Di=—1, Ap=2] = 2.

0
6

The condition in a) of the previous theorem is not satisfied, and the condition
in b) is also not satisfied. Using ¢) we can conclude that the function f has no local
extreme in E;. From this it also follows that the function f has no (global) extreme
on E,.

In the next example we pay attention to a procedure for ﬁndlng globa.l extremes
of a function on a set.

. )
1.7.10. Example. Find the global extremes of function f : f(z,y) = % + zy? — dzy

2
on the set G = {[w,y] eE; :y> % Ay < 3;1:}. (Draw the sketch of G.)

Solution: function f is a function defined and continuous in E;, and set G is a
bounded closed subset of Eg, so the (globa.l) extremes of f on G exist, see Theorem
1.3.18.

A function can have globa.l extremes at critical points or aft bounda.ry points
only, see Remark I.7.6.

A) Firstly, we find all critical points - interior points of G where (grad f)(X) = O or
where the function is not differentiable. We calculate the partial derivatives:

%(x,y) =2l +y’ —dy=2+y(y-4), gy—f(wsy) = 2zy — 4z = 2z(y — 2)

Partial aerivativesra.re defined and continuous in E;, so f is differentiable. Uéing the
necessary condition of a local extreme we solve the system (grad f)(X) = O, i.e.

2 +yly-4) = 0
2e(y—2) =0

From the second equation we get t =0V y = 2.
a) Let ¢ = 0; then from the first equation we get y =0V y =4.
3) Let y = 2; then from the first equation we get z = -2V z = 2.
Thus, we get the points: [0,0],[0,4],[2, —2],[2,2]. However, only point [2,2] is

an interior point of G, ([0,4],(2,-2] ¢ G, [0,0] € 8G). We denote 4o = [2,2],

16 &
f(Ag) = -3 =-5.3.
B) Now we will investigate the boundary of G. The boundary of G can be divided
into two parts:

= {[z,y] EEy i y= 3 ,.L € 0 9]} Ty ={z,y] € Ey : y=3x,x € [0;9]}
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Part I'y: The function value of f on I'y depends only on one variable:

_ 2 £ 2t 22 b
F1(a:) =f(.’b‘,?)— ?+IE-4$—" ——9—-—1:

Part I'y: The function value of f on I'; also depends only on one variable:
Fy(z) = f(z,32) = —-§-z —-124°

Ba) We will investigate these functions on the open interval z € (0;9), (and we will
evaluate the function values at z = 0 and = = 9 in part Bb)). We get the critical
points of F; from the relation:

5 ,
Fi(z) = §:c -3z =0
Thus, z = 0., ";—7, - % However, only the pbint T = 25—7 is an interior point

of the interval [0;9]. After evaluation of the y-coordinate (y = ’Tz = 2) we denote
Ay =[{/%,2]. We can compute the function value of f at 4; : f(4;) = F,(\/"Z,,E)_é

515
= — 5.019389.
Part I‘g:
Fi(z) =282 - 24z = 0 = z= 0,‘?.
The interior point of [0; 9] is z = £. After evaluation of the y-coordinate (y = 3z = 18)

we denote A; = [£, 18]. We can compute the function value of f at Az : f(42) =
Fz( )= —2.938775.
Bb) Now we evaluate the function values f(0,0) = F1(0) = F;(0), and £(9,27) =
Fl(g) = Fz(g) 2
2=0 = y=%=3m=0 = A;=1[0,0], f(As)=0
2

2=9 3 y=-—=82=27 = A, =[9,27), f(As)=5832.

If we compare the function values of f at points Ag, A;, ..., A4 we get: function
f has the global minimum on G at the point Ay = [2,2] and the global maximum
on G at the point A4 = [9,27]. (Point A, is an interior point of G, point A is a
boundary point of G.)

11.8. Exercises.

1. Find the function’s domain and range.

f(z,y) = o=V flz,y) = ﬁ f(a,y) =In(e* +2° +47)
flaz,y)=W—= fz,y) =y —a? f(z,y) = cos(3z? — 2y + 3)
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f(z,y,2) Fyzlnz

f@ys) =VE TP+ 1

1
= z,y,z) = arctan(z +y + 2)
f(fl' y,z)—$,+yg+zz f( 2 Ys ) (
2. Do the following limits exist? If yes, evaluate them.
2 _y? . z* . e¥sinz
= 322 —y" +5 im  ——p m
sl z? +y? +2 (e.31=0,0] 24 + y [=.¥1=+10, z
z+y—4 . z4+y
Ho = o - 2 = vlll-?llﬂ ol —
[z,v]=[0,0] t:tyi [e.u)=+2,2] /T + y_ , ' y
c-y+2/z -2y I y+4
m 2. -4 22y — zy +4a? — 4z
[=,3]+[0,0] NNl ) [.,.;]4 y—zy

3. At what points [z,y] in the plane are the functions continuous?

2 4 + 1 ) 1
flz,y) = +§ f(z,y) = ___..__;I:_ = fen) =gy
f(z,y) =l > f(z,y) = cos(z® + zy) flz,y) = et
z

4. At what points [z,y, 2] in space are the functions continuous?

faws) =gy fE@ws) =l f(z,y,2) = ¢*sinz +)

1 1
z+Yy ooy s e i
flz,y,2) = ;—y f(z,y,z) -]na:yz f(a:,y,z) Tyl + 2]
1 i y+4
f(x,y,?)=flj—xgﬁ——m f(z,y,z)—zzy_xy+4zz,_4x

5. Find 8 and 5L

f(z,y) =2 —Tay + 137 f(z,9) =(+2*(w+3) flz.y) = m’(2&! -5)

f(z,y) = zsin(zy) f(z,y) = In(z%y) f@9) = Ty
fay) = 2L fay) =l -2%)  f@y)= ~/z= T
z—y Bikh i
f(a,y) = ¢ lay 129) = sy f(z9) = e
6. Find 33(- -g-f and g't
.f(xny:z) f(z,y,z)=n:-—vy2+zz f(x,y,z)=a.rctan(z+y+z)
1
f(z,y,2) =2y +yz + 2z flz,y,2) = Vi + 2+ 22 f(z,y,2) = m

2 ex+]ny2

.f("cay! )"5 sin yw:;z f(mvyaz)=_'ﬁ f('tsylz)= \/E
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7. Find the second order partial derivatives of the following functions.
f(z,y) = 2"y + cosy + ysinz f(z,y) = ze¥ +y +2°* — 13
fle,y) = 4 zlny+ylnz +3 flz,y) =y+ 2’y + 4’z —In(y® +2)

f(z,y) = y* + y(sinz — *). f(z,y) = 2 + By + sin(zy) + :cue"li:1

. 8. Evaluate grad f at point M and directional derivative %é(M ).

f(z,y) =o* + 22y — 3y, M =[1,1], §=(3,4)

flz.g2) =2 + 2% - 32° - 17, =[1,1,1], F=(1,1,1)

flz,y,2) = cos(zy) +€** +1n(22), M =[1,0,0.5], §=(1,2,2)

9. Show that the followmg equations F(z,y,z) = 0 define implicit functions f :
z = f(z,y) in the nea%hbourhoods of the given points M = [M;, M3, M;), and find
its partial derivatives £, -55 at [My, M3).

F(z,y,2) =2 —zy+yz+y* -2=0, M =1,1,1]
F(z,y,é)=zz—2y2+z'2—4x+22—-5={l, M=[—1, g—,l:' |

F(z,y,2) =22 — 2’y + 2+ 2z —y =0, M=10,1,1]
F(z,y,2) =sin(z + y) +sin(y + 2) +sin(z + 2) =0, M =[x, 7]

10. Find the equations for the tangent planes and norma.l lines at points M on given
surfaces F(z,y,2z) =0. -

F(z,y,2)=2*+y* +22 -3 =0, Mﬁ—f[l,l,l]
F(z,y,z) = cos(mrz) — x y+e""+yz—4 0 M =[0,1,2]

11. Find all the local maxima and local minima of the following functions.
flz,y) = 20y 52 ~ 2" + 4z +4y -4 f(z,y) =2’ +oy+3c+2+5
fley) =5ey—Te* +3c-6y+2  flz,y) =2* —dzy +4? +6y+2
flz,y) =22 +3zy + 4" ~5s +2y  flz,y) =2’ ~y* 20 +4y+6
flz,y) = 82" +y* + 62y

f(m,y)=x’+y3+3w’—3y’—8' flz,y) =22° + 24 — 92" + 3y* — 12
flzy) =day—z* —y*—11 flz,y) =a* +y* +day +7

3
f@,y) =92 +3% — day

12. - Find all the global maxima and global minima of the functions on the given
subsets.

f(z,y) =22" -4z +4° ~dgED
f(z,y) =< —xy+y +7, S
flz,y) =2 +zy+y* — 6242,
f(z,y) =* + 2y +y* — 62,

f(z,y) = 48zy — 322° — 24¢°,

f(z,y) =2 _yzr

G={[z,y] : 220,y<2,y>2q}
G={lz,y) : 220,y<4,y >}
G={lz,y] : 0<2<5-3<y<3}
G={lr,y) : 0<z <5 -3<y <0}
G={le,y] : 0<2<1,0<y<1}
G={lzyl 22 -1, y2-1, a+2y < 2}
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