II. Riemann Integral of a Function
of One Variable ’

I1.1. Motivation and definition of the Riemann integral.

II.1.1. Physical motivation. 1. Suppose that we have a spring or a thin rod
of a finite length which need not be homogeneous. This can be caused e.g. by a
varying cross-section of the rod or by varying density of the material that the rod is
made of. We can assume that the rod covers the interval (a,b) on the z—axis and its
longitudinal density (i.e. amount of mass per unit of length) is a function y = p(z).
We wish to evaluate the mass M of the rod.

If function p is constant then the problem is very easy — we can simply put M
equal to the product of the constant longitudinal density p and the length of the
interval {a,b), i.e. M = p-(b—a).

If p is not constant then we can divide the rod (i.e. the interval (a,b)) into many
shorter parts (the subintervals (zo,z1}, (21,22}, (22,23), ..., {zn-1,2,) where
9 = a and z, = b) and we can approximate function p by a constant on each of
the subintervals. A reasonable value of this constant is p(¢;) for some ¢; € (z;—1,z;)
({=1,2,...,n). Then the approximate masses of the the shorter parts of the rod are

p(G1) - Azy,  p(G)- Azz, ..., p(Ca)- Az

where Az, = 21 — &0, Az = 23 — 21, ..., Az, = 2, — z,—1. The approximate mass

of the whole rod is
n

Z p(Gi) - Az,

=1 :
' We can naturally expect that this sum will approach the exact value of the total mass
M of the rod if n — 400 and the numbers Az; (i = 1,2,...,n) tend to zero.

2. Suppose that a car moves in a time interval (a,b) and its velocity is given by the
function y = v(t). We wish to compute the distance d the car travels in the time
interval (a;b).

If the velocity v is constant then the distance is obviously d = v - (b — a).

If the velocity is varying then we can divide the time interval {a.$) into many
shorter subintervals (tg,%1), (#1,2), ..., (ti—1,%;) (Where to = a and t, = b) and we
can approximate the velocity by a constant on each of these shorter subintervals. A
natural value of this constant is v((;) for some (; € (t;—1,¢;) (i = 1,2.... ,n). The
approximate distances moved in the time intervals {to,1), (t1,%2), ..., (fn—1,tn)
are :

U(C]}'Atla U(C2)'A12; tee oy v((n)'Atn

where Aty =t —to, Aty =ty —y, ..., Aty = t, — tn—;. The approximate distance
travelled in the whole time interval (a,b) is
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3" u(¢) - A

i=1
One can expect that this sum will approach the real distance that the car travels in
the time interval (a,b) if n — 400 and the numbers At; (i = 1,2,...,n) tend to
zero.

I1.1.2. Geometric motivation. Suppose that f is a nonnegative and bounded
function on an interval (a,b) and D is the region between its graph and the z-axis.
(See Fig1l.) An important question is how to define and evaluate the area of D.

If f is a constant function on (a,b) then D is a rectangle and its area is equal
to the product f- (b — a).

If function f is not constant then we can again subdivide the interval (a,b)
into many short subintervals {zq,21}), (21,22), ..., (Zn—1,2n) (With ¢ = a and
zn = b) and we can approximate f by a constant on each of these subintervals. A
possible value of this constant is f((;) for some {; € (zi—1,2;} (i = 1,2,...,n). Thus,
we can approximate the area of the region below the graph of f on the subinterval
(Zi-1,7;) by the area of the rectangle with the sides f((;) and Az; (= z; — zi-1).
The approximate value of the area of the whole region D is equal to the total area
of all the rectangles:

Z f(G) - Az;.
i=1

(See Fig. 1.) We can now define the area of D as a limit of this sum for n — 400 and
the lengths Az; of the subintervals (z;_,z;) (i.=1,2,...,n) tending to zero.
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Fig. 1

One can observe that all the situations described in paragraphs I1.1.1 and I1.1.2
lead to the limit of a certain sum and the sum is the same in all the considered
situations. We explain in the next paragraphs what we exactly understand under the
limit of this sum, what we call it, how we denote it and how we can evaluate it.
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11.1.3. Partition of an interval. Let {a,b) bea boungied closed interval. A sygtt?m
of points g, T1, ... , Tn such that a =19 <21 <... <ZTp = b is called a partition
of the interval (a,b). If this partition is named P then we write

ey a=I0<I]<.-.<£n_1<In=b. (Hl)

The norm of partition P is the number ||P|| = max=1,...,n (z: — zi—1). (Thus, |[P||

is the length of the largest of the subintervals (29,21 ), (21,22}, ..., (Zn—1,%n) and ,

it informs us how “fine” partition P is.)

IL.1.4. Riemann sums and their limit. Let y = f(z) be a bounded function on
the interval (a,b) and let P be the partition of (a, b) given by (IL.1). Denote by Az;
the length of the i-th subinterval (zi-1,2i) (e Azi =zi—Ti ). Let V })e a system
of points (1 € (zo,1), (2 € (21,22}, --» Cn € {Za-1,%n}. Then the R:emann‘.mm
of function f on the interval (a,b) corresponding to partition P and system V is

s(FLRV) = f(¢) Az,
C=1 Loy ey
 We say that number S is the limit of the Riemann sums s(f, P, V)as | Pl — 0+
if to every given € > 0 there exists § > 0 such that for every partition P of (a,b) and
for every choice of V, ||P|| < & implies |s(f, P,V) — §| < e. We write: '

i PV)=S5. L2
leﬁgw s(f,P,V) (11.2)

I1.1.5. Riemann integral. If the limit in (IL.2) exists then function f is called
integrable in the interval (a,b) and S is called the Riemann integral of function f on
{a,b). The integral is usually denoted as

[f(a:)dz or f:fdm.

The numbers a and b in this integral are called the limits of integration, a being
the lower limit and b being the upper limit. The integrated function is called the
integrand. .

The Riemann integral is also often called the definite integral.

I1.1.6. The area of the region between the graph of a function and the
z—axis. It follows from paragraph I1.1.2 and the definition of the Riemann integral
that if f is a nonnegative and integrable function on the interval (a, b) then the area
of the region between the graph of f and the z-axis can be defined as the value of
the integral f: f dz.

By analogy, if function f is nonpositive and integrable on the interval (a,b) then
the area of the region bounded by the z—axis (from above) and the graph of f (from

below) can be defined as — f: fdz.

In a general case, when f has both negative and positive values in the interval -

{a,b), the integral f: 'f 'dz expresses the sum of the areas of all the parts of the
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region between the graph of f and the z-axis, but the contributions of the parts
below’ the ‘z—axis are taken negatively. :

You will see in Chapter III that the area of more general sets than the regions
below or above the graph of a function y = f(z) can be defined by means of a so
called two—dimensional measure my and evaluated by means of a double integral.

I1.1.7. Extension of the definition of the Riemann integral. If function f is
integrable in the interval {a,b) then we put a b
_ ffdx:-f f dz.
b a

Specially, we also put f fdz =0.
a

II.1.8. The mean value of function f on an interval. Let function f be
integrable in the interval (a,b). The number

1 b

is called the mean value (or the average value) of function f on the interval {a,b).

The mean value has the following geometric interpretation: Suppose for simpli-
city that function f is nonnegative on the interval (a,b). Then the mean value p is
such a number that the region between the graph of f and the z—axis has the same
area as the rectangle with the sides b — a and y. It is clear that .-

2 flz) < p < zesz‘;?b)f(x)- o (IL.3)

IL.2. Integrability (existence of the Riemann integral) — sufficient
conditions. . T

The two statements “the Riemann integral | : f(z) dz exists” and “function
f is integrable in the interval (a,b)” say exactly thé same.

Most of the functions you will use in various applications will be integrable.
Nevertheless, you should be aware that there also exist “bad” functions such that the
limit of the Riemann sums (II.2) does not exist. Thus, the Riemann integral of these
functions also does not exist. These functions are called non-iniegrable. The next
theorem and Remark I1.2.2 give sufficient conditions for the integrability of function
f (i.e. for the existence of the Riemann integral of f).

11.2.1. Existence theorem for the Riemann Integral. Let function f be con-
tinuous on the interval (a,b). Then f is integrable in (a, b).
11.2.2. Remark. Th.is theorem can l.ae.genera.lized:

Let function f be bounded and piecewise-continuous on the interval {a;b): Then it
is integrable in (a, b). . g i
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(A function f is said to be piecewise-continuous in the interval (a,b) if (a,b) can be
divided into a finite number of subintervals such that _f is continuous in the interior
of each of them.)

11.3. Important properties of the Riemann integral.

11.3.1. Theorem. (The domination inequality for the Riemann integral.)
If functions f and g are both integrable in the interval {a,b) and ¢(z) < f(z) for

all z € (a,b) then
b b
/ gdz < ] f dz.
B a a b
Specially, if f(z) >0 for all z € (a,b) then f fdz>0.

11.3.2. Theorem. (Boundedness of the Riemann integral.) If function f is
integrable in the interval (a,b) and m < f(z) < M for all z € (a,b) then

]
m-(b—a) < / f(z)dz < M -(b—a).

Both theorems I1.3.1 and II.3.2 easily follow from the definition of the Riemann
integral. Theorem I1.3.1 tells us that if function f dominates function g on (a,b)
and the functions f and g are both integrable in (a,b) then also the integral of f
dominates the integral of g on (a,b). The inequality in IL.3.2 shows that the value of
the Riemann integral can be estimated by means of the lower bound and the upper
bound of function f.

" I1.3.3. Theorem. (Linearity of the Riemann integral.) If functions f and g
are integrable in (a,b) and a € R then

j;b(f+g)dz=[fdz+f:gdx and .[“'fdx:a'fabfdx-

(This property is already known from the theory of the indefinite integral.)

II.3.4. Theorem. (Additivity of the Riemann integral with respect to the
interval.) If the integrals [ f dz and f: f dz exist then

/;cfdx+/:fda:='[‘bfdx.

11.3.5. Theorem. a) If function f is integrable in the interval (a,b) and if
(¢,d) C (a,b) then f is also integrable in (c,d).

b) If functions f and g are both integrable in the interval (a,b) then the product
f+g is also integrable in (a, b).
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¢) If function f is integrable in the interval (a,b) and function g differs from f in
at most a finite number of points then function g is also integrable in (a,b) and

[_.;d.-::[fdm.

Item a) 1s an immediate consequence of the definition of the Riemann integral.

Item b) is a statement about the integrability of a function which is the product
of two other functions. However, bear in mind that the fact that “the integrability of
f and g implies the mtegra.b:hty of f-g¢” does not mean that

[ fogde= ([} fda)- () g da)!

Item c) tells us that the change of function values of f in at most a finite
number of points does not affect the existence or the value of the integral f: f dz.

In other words: The existence and the value of the integral | : f dz do not depend
on function values of f in a finite number of points. Thus, function f need not even

be defined in a finite number of points of the interval (a,b) and this has no influence
on the existence and the value of f: f dz. Specially, it plays no role whether the
integral f: f dz is considered on a closed or on an open interval!

11.3.6. Theorem. (The Riemann integral as a function of its upper limit.)
Suppose that function f is integrable in the interval (a,b). Then

a) the function F(z) = [7 f(t) dt is continuous in (a,}),
b) the equality ‘
d [* .
= | fa =@ (1L4)
holds in all points z € (a,b) in which f is continuous.

Function G(z) = _f: f(t) dz (with the variable lower limit) is also continuous
in (a,b). However, it satisfies the equality in b) with the change of the sign:

b
i f f(t) dt = —f(z). (IL5)

(This is a consequence of the equation G(z) = f f(t) dt — F(z).)

Equalities (IL4) and (II.5) can also be modified for the boundary points of the
interval (a,b) so that if function f is right—continuous at point a (respectively left—
continuous at point b) then F(a) = f(a) (respectively F'(b) = f(b)).

The validity of statement a) follows (at least intuitively) from the geometric
interpretation of the Riemann integral (see paragraphs I1.1.2 and II.1.6). Formula
(I1.4) can be proved in this way:

_ z z+h z
F'(E) = ,‘l'iﬂ E.(:’;-F-—"z.i). = P_E(l] % [l f(t) dt—j; f(t) d‘t] =
T z+h
= pm g [ AOd = Jm uh
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where p(h) is the mean value of function f on the interval with the end points z and
z + h. The continuity of f at point z and (I1.3) imply that u(h) — f(z) if h — 0.
This proves (IL.4).

I1.3.7. Remark. It follows from Theorem IL.3.6 that if function f is continuous in
interval J and ¢ € J then the function F(z) = ST f(t) dt is an antiderivative to
function f in J.

1L.3.8. Remark. Formula (IL.4) can be generalized. If function f is continuous in
interval I and a(z), b(x) are differentiable functions of variable z in interval J with

their values in I then

(z)
[ 10 de = 16 ¥ o) Flele) -2

forz € J.

11.4. Evaluation of the Riemann integral.

We come to one of the fundamental topics of this chapter — to the question how to
evaluate the integral f: f dz. Due to its importance, the next theorem is called the

Fundamental Theorem of Integral Calculus:

IL4.1. Theorem. If function f is continuous in the interval (a,b) and F is an
antiderivative to f in (a,b) then

j b fdz = F(b)— F(a). (IL6)

The formula (IL6) is called the Newton-Leibnitz formula. The difference F(b)—
F(a) is often written in a shorter form: F(b) — F(a) = [F]

The proof of the Fundamental Theorem of Integral Calculus is easy: The function
G(z) = [ f(t) dt is also an antiderivative to f in (a,b). Thus, there exists a constant
¢ such that F = G + ¢ on (a,b). This means that F(a) = G(a) +¢=c (because
G(a) = 0) and F(b) = G(b) + ¢ = G(b) + F(a). This yields: f: ft) dt = G(b) =

- F(b) — F(a).

The Newton-Leibnitz formula connects the indefinite and the definite integral:
When you know the indefinite integral of f on the interval (a,b) then you also know
all antiderivatives to f on {(a,b). You can choose any of them and use it in the
Newton-Leibnitz formula to obtain the value of the definite integral of f on {a,b).
The fact that the indefinite integral and the antiderivative are so important in the
calculation of the definite integral was one of the main reasons why you have learned
to compute indefinite integrals.

You already know that all antiderivatives to function f on the interval (a,b)
differ at most in an additive constant. Thus, if you choose e.g. an antiderivative
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g |
=

F + k (where k is a constant) instead of F' and you use it in the Newton-Leibnitz
formula, you get

b
[ 1de = F4RE = (FO+H) - (F@+H) = FO) - Fa).

The result is the same as in formula (I1.6). Hence you can see that it is not important
which one of the infinitely many antiderivatives to f on (a,b) you use.

11.4.2. Example. / sin zdz = [~ cos z]T = (—cos 7) — (—cos 0) = 2.
0

The next two theorems show that the method of integration by parts and the
method of substitution, known from the theory of indefinite integral, can also be
directly applied to the Riemann integral.

I1.4.3. Theorem. (Integration by parts for the Riemann integral.) Let the
functions u and v have continuous derivatives in the interval (a,b). Then

b | I
ju'-vdx = [u-v]} —/ u- v dz. (IL7)
a a

wey - T SRR
I1.4.4. Example. f e .zdr=") [Le¥* :r.]z = / le¥de =
o 0 Jo

i

i

14__10.__1_%2_43;4'10 3 4
=1let2- 10— [1e¥] =t —fe' + i’ =Fe +

*) We have put u'(z) = €%, u(z) = } €**, v(z) = z and u'(x)=1 _
IL.4.5. Theorem. (Integration by substitution for the Riemann integral.)

Let function g have a continuous derivative in the interval (a,b) and let g map (a,b)
into interval J. Let function f be continuous in J. Then IR R

. f bf(s:(av))-g"(aﬂ) dz - ] " f(s)ds. (IL.8)
: :.E a . 9(a) i .

Formula (II.8) can be used in two situations: you wish to evaluate the integral
on the left hand side and you transform it to the integral on the right hand side (if
the integral on the right hand side is simpler) OR. vice versa.

w2
I1.4.6. Example. Let us evaluate f " sin’ - cos z dz.
) T
If we put (a,b) = (0,7/2), s = g(z) = sin z, f(s) = s?, J = (—00,+00), We can see
that all the assumptions of Theorem I1.4.5 are satisfied. Moreover, ¢(0) =sin0=10
and g(m/2) = sin(x/2) = 1. Applying formula (IL.8), we obtain:
w2 1
[ stz con 2 e = j Pdom ] m L.
0 0
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2
11.4.7. Example. Let us evaluate / Vd—ztdz.’
0

We can take this integral for the integral on the right hand side of (II.8) (with the
variable denoted by z instead of s). The function f(z) = /4 —z? is continuous on
{0,2) and so the integral exists. Put z = g(t) = 2 sin t, dz = ¢'(t)dt = 2 cos ¢ dt.
We have g(a) = 2 sin a = 0 and g(b) = 2 sin b = 2. Thus, we can choose a = 0.and
b = /2. Then all the assumptions of Theorem II.4.5 are satisfied and we obtain:

2 w/2 /2
f 4 —z2dr = v4—4sin2t~2costdt=/ 4 cos’tdt =
0 0 0

/2
= / 2(1+cos 2t) dt = [2t+sin2t])]/2 = 7
0

I1.4.8. Remark. Suppose that you have to evaluate a Riemann integral on the
interval (a,b) and you wish to use integration by parts or a substitution. Then you
have two possibilities: )

1) You can use Theorem IL4.3 or Theorem I.4.5. You transform the integral to
other (simpler) integrals and you deal with the upper and the lower limits of all
the integrals during the computation. This approach is explained in examples
11.4.5, I1.4.6 and I1.4.7.

2) You can first compute the integral as an indefinite integral on the interval (a, b)

and then you apply the Newton-Leibnitz formula (I1.6) on (a,b).
To show what we exactly mean by this, let us compute the integral from example
11.4.6 once again, this time by the method we are just explaining. Thus, let us
start with the indefinite integral [ sin®z cos z dz. We can use the substitution
s=sin . Then ds=cosz dr and

/sin‘zz-coszdz = fszds =1l +e=tsin’z+e

/2 i
Formula (II.6) now gives: / sin® z cos « dz = [} sin® .‘t]:lz =}
0
As you will observe after having solved a larger number of examples, approach
1), based on direct application of integration by parts or integration by substitution
to definite integrals, is usually technically simpler and less laborious.

II1.5. Numerical integration.

You will remember from the theory of the indefinite integral that an antiderivati-
ve to a given function f often exists, but it cannot be obtained by standard methods of
integration and it cannot be expressed in a “closed form” (i.e. by a formula prescribing
a finite number of operations). Analogously, it often happens that the the Riemann
integral f: f dz exists, but it cannot be evaluated by a standard integration based
on the Newton-Leibnitz formula. However, there exist approximate methods (also
called numerical methods) which enable us to evaluate the integral approximately,
with an error as small as we wish. We shall explain two such methods in this section.
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Both these methods usually require the performance of a higher number of arithme-
tic operations in order to reach a higher accuracy (i.e. a smaller error). Therefore
approximate methods are usually used on computers.

Both the methods are based on the partition
P: a=z< 11 <29... <ZTp-1<Tp="b (11.9)

of the interval (a,b) to n subintervals (zx—1,2k) (k =1,2,...,n) of equal length A.
Thus,
b—a
h= - and zr=a+k-h (k=12,...,n).

We shall denote yx = f(zi).

11.5.1. The trapezoidal method. Suppose that we approximate function f by a
linear function on each of the subintervals (zx—1,2x). A linear function is uniquely
determined by the requirefnent that its graph (a straight line) passes through two
chosen points. Let these points be [zx—1,yx—~1] and [z, yx]. Then the linear function
has the equation y = yx—1 + (y& — ye—1)/h - (z — zk—1). We can easily integrate it
on the interval (zg—;,zx ) and we obtain Iy = k- (yr-1 + ¥ )/2. It is the area of the
trapezoid (see Fig.2). When we sum all the numbers Iy, I, ..., I, we get

h
T, = E-[y0+2y1 +2y2 4+ 21 +¥n - (1L.10)

Fig. 2

T, is an approximate value of the Riemann integral |, : f dz. The geometric sense of
T, is seen on Fig.2 — it is the sum of the areas of n trapezoids constructed on the
intervals (zo,z1), (21,22} ..., (Tn-1,Zn).

As to the accuracy of the approximation, it generally holds that the finer the
partition of (a,b), the better are the results. In other words, the accuracy of the
approximation increases with increasing n (i.e. decreasing k). It can be proved that
if f" is continuous on (a,b) and M is an upper bound for the values of [f"| on (a,b)
then the following error estimate holds:
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<Pty (IL11)

- 12

b
ﬂ—ffﬁ

I1.5.2. Simpson’s method. Suppose now that n is an even nun.lber. We can app-
roximate function f by a quadratic function on each of t:.he subintervals (zo,z2),
(2,Z4)s -+ » (Tn-2,Zn). A quadratic fu{txction on a fsubmterval (zp—z,z) (B =
2,4,...,n) is uniquely defined by the requirement that its graph (a parabola) passes
through three chosen points — let it be the points [2k—2,Yk—2], [zf_l,yk_l.], [z, yi]-
The integral of this quadratic function on (zg—2 , %k ) can be relatively ea.s_lly evalua-
ted — you can check that it is Ir = h- (ye-2 + 4ye—1 + yk)/3. Summing all the
numbers Iz, Iy, ... , In, we obtain

S, = g . [yn + 4y + 22 + 4ys + ...+ 2yn—2 + dyn—1 +Yn ] . (1112)

Provided that the fourth derivative f) of function f is continuous on (e, b‘) and
M is an upper bound for the values of |f9] on (a,b), the following error estimate

holds: ) )
5,,—[ faz| < =AM (IL.13)

I1.6. Improper Riemann integral.

A fundamental assumption in the definition of the Riemann integral f: [ dz
was the boundedness of the interval (a,b) and the boundedness of function f on
{a,b). However, we often need to work with integrals whose domajfl of integration
(the interval) or the integrand (the function) are unbounded. Such mtegra:ls, where
either the interval or the integrand (or both) are unbounded, are called improper
'Riemann integrals. We will explain the definition of the improper Riemann integral
in this section.

Suppose that function f is defined in the interval (a, b) and that it is integrable
on each interval (a,t) (for a <t < b). If the limit

t
iy
exists, then its value is called an improper Riemann integral with a sinqular upper
The improper Riemann integral of function f is denoted in the same way as the
“ysual” Riemann integral, i.e. [, f dz. Thus, we can write:

j: flz)dz = ‘El:;:l_ /: f(z) dz.

The improper Riemann integral with a singular lower limit can be defined quite
analogously. The definition can even be extended to the case when both the limits

are singular: If the two integrals o “f dz and f: f dz exist (the first one as
an improper integral with a singular lower limit and the second one as an improper
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integral with a singular upper limit) and their sum is defined (i.e. it is not for example
—00 + 00) then we put f:f dz = [’ fdz +f:f dz.

If function f is integrable (in the sense of paragraph I.1.5) on the interval (a, b)
then theimproper Riemann integral of f on {a,b) coincides with the “usual” Riemann
integral'of f on (a, b). Thus, the improper Riemann integral represents an extension
of the definition of the “usual” Riemann integral.

Th;._.ﬁriajpe of the improper Riemann integral | : f dz can either be finite (we
say that the integral _[: f dz  converges) or it can be infinite (the integral f: fdz
diverges).

N ‘ +oo
I1.6.1. Example. Lef us evaluate the improper Riemann integral j p dz.
3t 1

The function f(z) = 1/z is continuous on the interval (1,+c0) and it has an anti-
derivative F(z) = In z. Thus,

t .
f %dx =F({t)-F(1) =lnt-Inl=Int
1
t

. . +00
Since lim / E dz= lim Int= 400, we get: / l dz = +co.
! 1 t—+oo 1 xz

“t—too T

I1.7. Historical remark.

" "Both differential calculus (i.e. limits, derivatives, their applications, etc.) and
integral calculus (i.e. integrals) are together called calculus. Many aspects of finding
and analytically describing tangent lines were worked out by René Descartes (1596
1650), Bonaventura Cavalieri (1598-1647), Pierre de Fermat (1601-1665) and others.
However, we usually consider Sir Isaac Newton (1642-1727) and Baron Gottfried
Wilhelm Leibnitz (1646-1716) to be the inventors of calculus. They were the first
to understand that the process of finding tangents and the process of finding areas
are mutually inverse. Since they lived in the same time, the question of priority over
the invention of calculus has lead to the bitter controversies. Leibnitz was accused of
copying Newton’s work and the Royal Society of London did not exonerate him from
this charge after investigating the matter. Present—day historians and mathematicians
consider that Leibnitz’s and Newton’s inventions were simultaneous, but independent.
Nevertheless, the disputation caused a split in the mathematical world for one and
half centuries. The followers of Newton, mostly British, pursued his methods while
Leibnitz’s pupils, mostly French, Germans and Swiss, followed his approach. Due to
Leibnitz’s superior notation and his simpler mathematical language, his followers were
able to be more successful than their British counterparts in the further development
of calculus.

The original historical definition of the definite integral was different from the
definitions you can find in present—day literature. This is especially due to the fact
that the concept accepted at the time of Newton and Leibnitz is not quite correct
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from the present-day point of view. However, since thig concept is very simple, let
us explain it. »

Suppose that f is a function defined and bounded on the interval {(a, b). We divide
the interval {a,b) into infinitely many “infinitely small” parts. A typical “infinitely
small” part is an interval (z; z+dz ), where dz is an “infinitely small” positive number.
The product f(z)-dz has the following geometric interpretation: The region between
the graph of f and the interval (z,z+dz) on the z-axis can be taken as an “infinitely
narrow” rectangle and if f(z) > 0 then f(z) - dz is the area of this rectangle. The
sum of all “infinitely small” numbers f(z) - dz (for all z € (a,b)) was called the
definite integral of function f on the interval (a, b).

The incorrectness of this approach can immediately be seen - the notion of an
“nfinitely small” positive real number dz is wrong: such a number does not exist! If
you do not believe this, then imagine that you have such a number. Is it e.g. 10767
No, because you can find many positive numbers less than 107%. And what about
dz = 10~2°? Even this dz is not “infinitely small” because there exist many other
positive numbers, less than 10~2°, You can see that the concept of an “infinitely small
positive number” logically leads to the contradiction. Mathematics cannot allow itself
to work with notions which are not defined precisely. (Overlooking this rule has often
in the past lead to surprising contradictions or confusions in mathematical theories
and models.) This motivated Georg F.B.Riemann (1826-1866) to study the definite
integral in detail and put it on solid logical foundations. :

Nevertheless, in spite of the logical incorrectness of the concept of an infinitely
small positive number dz, the idea often still appears in various applications, and we
have not completely abandoned it. We will use it again in paragraphs IV.2.1, Va4l
and V.2.1 which have a motivating character and whose main purpose it to show
that the following definitions of various types of integrals are reasonable and that the
integrals have some physical sense.

I1.8. Exercises.

1. Do the following Riemann integrals exist?
1 2
/ - z+1 dz j Inz dz -
g at—2—6 1z z
2?2 +1
T

1
J
5 3 T —
[ e Lo
2
J

si
1

% dz
2. Evaluate the following integrals.
d.

1 1
j (32 — 4z +7) dz j (8% —12t* + 5) dt % s
-1 0

27
] 274 dg
1
2 1
1

2 1
f svi4zr + 1dzx / 96 du
0 0

(2u +1)*

1/2 x e
/ 22 (14 92%) % dz / sin 5r dr
0 0
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f cos 3y dip
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1

/2 /2
‘Ll 5(sin z)*/% cos z dz / 15(sin 3z)* cos 3z dz 2z sin(1 — 2*) dz

/2 -1
3 s .
P oride 41+\/2_: 1 g2
/2 vi— 20 +v [ a @ .[-1 a? +y? dy (a#0)
/ﬂ'/ﬂ —2m . 1
T cos z dx f cos’ z dx /
- _— A In(a+z)de (a>0)

2 1
j z3/4 — 22 dz / de
0 0

" dr
j —dz P r——
o 2+cosz 1++x

1112‘/___ e? dx /8
£—1d in®
A e z ./; o s -/o sin”(4z) dz

3. Find the area of the region between the graph of f and the z—a.xm
{'(;c)_::c’-—4m+3, 0<z<3 flz)=1-(z%/4), -2<z<3
flz)=5-522/%, -1<z<8 fle)=1-z, 0<z<4

4. Find the average value of
f(z) = 3z over (0,3)
f(z) =mz +b over (-1,1)

f(z) = Vaz over (0,a)
f(z)=mz+b over (—k,k)

5., Evaluate the following improper integrals.
/-i-oo dz /+m de ' -2 J
o 14z oo 4+ 22 oo 22
f+m _iz_ /+oo y2 . 5 L :
3. x?—1 0 o VB
e dzx e 2 s
L. vame [ f i o>
6. Evaluate F'(z) if function F is defined by the following integrals.

.. v 2
F(@:]/_ cos(t?) dt; >0 F(g,»):/ I
1 . o

'z x

F(z):Lumﬁ

za
F(E)=/: Intdt; z>0
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