III. Riemann Integral of a Function
of Two and Three Variables

II1.1. The double integral — motivation and definition.
The two—dimensional Jordan measure and measurable sets in E;.

III.1.1. Physical motivation. Suppose that we have a thin plate covering the
rectangle R = (a,b) x (c,d) in the zy-plane. The plate need not be homogeneous
and so its planar density (i.e. the amount of mass per unit area — let us denote it
p(z,y)) varies with the position of the point [z,y]. We wish to evaluate the mass M
of the plate.
If density p is constant then M =p-(b—a):(d—c). (Why?)
In a general case when the density is not constant, we can subdivide rectangle
R into many smaller pieces Ry, ..., Ry by a network of lines parallel to the z— and
y-axes. If rectangles Ry, ..., R, are “small enough” then p can be approximated by
a constant on each of them. A reasonable value of this constant is p(Z;) where Z;
is some point from R;. Then the approximate mass of the part of the plate covering
rectangle R; is p(Z; - Az; Ay; where Az; and Ay; are the lengths of sides of R;.
The approximate mass of the whole plate is .
n
> 0(2i)- Azi Ay
i=1
It is now natural to expect that the exact value of the total mass M of the plate
will be equal to the limit of this sum as n — +o00, and the numbers Az; and Ay;
(t=1,2,...,n) tend to zero.

II1.1.2. Geometric motivation. Suppose that z = f(z,y) is a nonnegative func-
tion on set R € E; and we wish to define and evaluate the volume V of the region
between the graph of function f and the zy-plane. Suppose for simplicity that R is
the rectangle (a,b) x (c,d).

If f is a constant function on R then the volumeis V = f-my(R) = f-(b—a)-
(d—c¢).

If f is not a constant function then we can use the same partition of R into n
smaller pieces Ri, ..., R, as in paragraph III.1.1 and we can approximate the volume
of the region between the graph of function f on rectangle R; and the zy—plane by
the number f(Z;) - Az; Ay; for some Z; € R; (i = 1,2,...,n). The volume of the
whole region between the graph of f on set R and the zyﬁpla.ne can be approximated
by the sum

}: f(Zi) - Az Ay, .

=1
The volume of the region between the graph of function f on R and the zy-plane
can now be naturally defined as the limit for n — +o0o0 and the numbers Azx;, Ay;

(i=1,2,...,n) tending to zero.
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I11.1.3. Rectangular region in E, and its partition. If (a,b) is a closed interval
on the z-axis and (¢, d) is a closed interval on the y-axis then the Cartesian product
R = (a,b) x (c,d) forms a rectangle in E;. We can subdivide this rectangle by a
network of lines parallel to the z— and y-axes into n smaller rectangles Ry, ..., R,.
The system of these smaller rectangles is called the partition of rectangle R.

If this partition is named P and if the lengths of sides of smaller rectangles
Ry, ..., R, are Azy, Ay, ..., Ar,, Ay, then the number which is equal to the
maximum of Az, Ay, ..., AZn, Ay, is denoted by || P|| and it is called the norm
of partition P. ‘ '
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IIL.1.4. Riemann sums and their limit. Let z = f(z,y) be a bounded function
on a bounded set D C E;. Let R be the smallest recta.ngle in E; whose sides are
parallel to the z— and y-axes and which contains D. Let P be a partition of R to
smaller rectangles Ry, ... Rn whose lengths of sides are Az, Ay, ..., Azn, Ayp.
The smaller rectangles can be nmimbered so that those of them which’ are ms;de D are
Ry, ..., Rm. (See Fig.3.) Let V be a system of points Z; € R; (i =1,2,...,m). Then
the Riemann sum of function f on set D corresponding to partition P a.nd system V
is . - il

s(,PV) =) f(Z)- Az by:.

i=1

We say that number S is the limit of the Riemann sums s(f, P,V) as ||P|| — 0+
if to every given € > 0 there exists § > 0 such that for every partition P of R and for
every choice of V, ||P|| < § implies |s(f, P,V) — S| < e. We write:

s(f,P,V) = : (IIL1)

IIPii—'°+

II1.1.5. The double integral. If the limit in (II.1) exists, then function f is called
integrable in set D and S is called the double integral of function f on D. The integral

is usually denoted as
j/ f(z,y) dzdy  or j[ fdzdy.
D D

49



II1.1.6. Remark. It follows from paragraph II1.1,2 and from the definition of the
double integral that if the function y = f(=z,y) is nonnegative and integrable on set
D € E; then the integral [[;, f dzdy defines and evaluates the volume of the region
between the graph of f on D and the zy-plane. However, you will see in Sections
II1.5 — II1.7 that the volumes of even more general regions in E3 can also be defined
and evaluated by means of volume integrals.

The notion of a bounded set in E; is too general for practical purposes. For
example, it can be shown that there exist bounded sets D € Eg such that even the
constant function is not integrable on D. In order to distinguish between these “bad”
sets and other “reasonable” sets, we introduce the notion of a so called measurable
set.

II1.1.7. A measurable set in E; and its Jordan measure. Suppose that D is
a bounded set in E;. We say that this set is measurable (in the sense of Jordan) if
the constant function f(z,y) = 1 is integrable on D. In this case, we call the number

ma(D) = ./:/Ddzdy

the two-dimensional Jordan measure of set D.

mz(D) has a very simple geometric interpretation - it defines and evaluates the
area of set D.

It is important to have a criterion which enables us easily to recognize some
simple measurable sets. We will give such a criterion in paragraph II1.1.10. However,
we first list some sets whose measure is zero.

IIL.1.8. Some sets whose two—dimensional Jordan measure is zero. It can
be proved for example that the following sets in E; have the measure equal to zero:

a) Sets consisting of a finite number of points.

b) Graphs of continuous functions y = ¢(z) or z = (y) on closed bounded inter-
vals.

¢) So called simple smooth curves, respectively simple piecewise-smooth curves (see
Section IV.1).

The next theorem is quite obvious, and it also concerns sets of measure zero.

111.1.9. Theorem. a) If Ny, N2, ..., N, are sets whose measure is zero then
ma (u;;1 N.-) =0.

b) ¥ M CN and my(N)=0 then my(M) =/)
II1.1.10. Theorem. (Sufficient and necessﬁry‘condition for measurability

of a set in E;.) A bounded set D C E; is measurable if and only if mq(8D) = 0
(where 8D is the boundary of D).
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II1.2. Existence and important properties of the double integral.

The two statements “f is integrable on set D” and “the double integral
Jfp f dzdy exists” say exactly the same.

II1.2.1. Existence theorem for the double Integral. Let D be a measurable set
in E; and let f be a bounded function on D whose set of discontinuities has measure
mg equal to zero. Then f is integrable on D.

In particular, if D is a measurable set and f is a bounded continuous function
on D then f is integrable on D.

II1.2.2. Important properties of the double integral. The double integral has
many properties which are exactly the same as the properties of the one-dimensional
Riemann integral explained in paragraphs I11.3.1 - II1.3.5. Let us mention only several
of them:

a) (Linearity of the double integral.) If functions f and g are integrable on
set D C E; and a € R then

J[+awa = [[ faa+ [[ gaean,
jLa-fdmdy:a-[jD_fdxdy.

b) (Additivity of the double integral with respect to the set.) If D; and
D, are measurable sets such that my (D1 n Dz) = 0 (i.e. Dy and D, are not
overlapping) and if f is integrable on Dy and on Dy then

f fd:rdy-l—/ fdzdy:f/ f dz dy.
Dy Dy DyuD,

c¢) If function f is integrable on set D € E; and function g differs from f at' most
on a set whose measure is zero then g is also integrable on D and

//ng::dy - '[fD,fdzdy.'

d) D CE; and mg(D) = 0 then /jfdzdy:(}
for every function f. 2

Proposition ¢) shows that the behaviour of the integrated function on a set of
measure zero does not affect the existence and the value of the double integral. Thus,
from the point of view of integration on set D, whose boundary has measure zero, it
is not important whether D is considered open (i.e. without its boundary) or closed
(i.e. with its boundary).
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II1.3. Evaluation of the double integral — Fubini’s theorem and
transformation to the polar coordinates.

Fubini’s theorem transforms the evaluation of a double integral to the computa-
tion of two single (= one—dimensional) integrals. It can be applied if the domain of
integration is a so called elementary region.

I11.3.1. Elementary region in E;. a) Let y = ¢1(z) and y = ¢2(z) be continuous
functions on the interval (a,b) and let ¢;(z) < ¢a(z) for all = € (a,b). Then the set
= {[z,y] €Eg; a<z <b, ¢1(z) Sy < daf2)}

is called the elementary region relative to the x-axis.
b) Let z = ¢1(y) and = = t2(y) be continuous functions on the interval (c,d) and
let 9, (y) < ¥a(y) for all y € (c,d). Then the set

D = {[t,s) € Ey; c <y < d, $1(y) < = < a(y)}

is called the elementary region relative to the y-azis.
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Elementary regions are measurable sets in E3. Let us now explain the idea of
integrating of function z = f(z,y) on the elementary region relative to the z-axis
(see Fig.4a). Imagine that we can cut the region into infinitely many infinitely na-
rrow vertical stripes. One such stripe is the line segment PQ on Fig.4a. We fir-
st integrate f on each such segment as a function of one variable y — we obtain

= [ ‘b’((:)) f(z,y)dy. Certainly, this depends on = because the position of the
hne segment PQ depends on z. Then we integrate F(z) as a function of z from a to
b. Thus, we obtain formula (IIL.2) (see the next paragraph II1.3.2).

The next theorem precisely formulates the assumptions under which we can
apply the described method, and it also treats the cas¢ when D is an elementary
region relative to the y—axis. ~ :

II1.3.2. Fubini’s theorem for the double integral. a) Let D be the ele:ﬁentmy '

region relative to the z—axis from paragraph IIL.3.1. Let the function z = f(z,y) be
continuous on D. Then
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] | fay) dody = f b( L i{)) f(z,y) dy) de. (II1.2)

b) Let D be the elementary region relative to the y-axig from paragraph II1.3.1. Let
function z = f(:i:,y) be continuous on D. Then

[ppensa ([ sne)a

II1.3.3. Example Evaluate the integra.l JIo( p(2z + 3y + 5) dzdy where D is the
region bounded by the curves y = iz,y=1/randz=2.

The given curves divide the zy-plane into various regions (Sketch a figure!) but
only one of them is bounided and this is D. It can be described as the set of all points
[#,y] € E; such that +/2/2 <'z'<'v/2and 1/z <y < 2z.

D is measurable (because it.is bounded and its boundary has the measure equal
to zero — see . Theorem III.1.11). Function f is continuous on D. Thus, using the
Fubini theorem 1I1.3.2, we obtain:

‘/:/;(23:+3y+5)dzdy = f\/:i('/f:(23+3y+5) dy) .da: -

e = A 3
= /ﬁ/2[2zy+ y? + 5y] —1/zdz s j\/'/z(“ + 622 +10x—2—§—2——;) de =

_ [20e* 2 3 i
-[ o 52"~ 22 + o -51”]‘/7

BV24+75-5In2.

You remember that a powerful method for computation of a one-dimensional
integral is the method of substitution. This method can also be used when we evaluate
a double integral. When applying it, we usually say that we transform the mtegra.l
to new coordinates. The most—used new coordinates in E; are so ca.lled polm: (or
generalized polar) coordinates.

II1.3.4. Polar coordinates in E;. The position of a point X € E; is uniquely
given by its polar coordinates r,  whose geometric meaning is the following: r is
the distance of X from the origin O and ¢ is the angle between the positive part of
the z-axis and the line segment OX. ¢ is measured from the z—axis towards the line
segment OX. (Sketch a figure!) The relation between the Cartesian coordinates z, y
and the polar coordinates r, i is given by the equations

T =rcosp, y=rsin. (IIL.4)

IIL3.5. Transformation of the double integral to the polar coordinates.

Suppose that we have to evaluate the integral [[, f(z,y) dzdy. We can use the

equations (III.4) and replace z, y by r cos p, respectively r sin ¢. However, we must

also

a) change D (analogously to the change of the limits in the one-dimensional integral
if we apply the method of substitution - see Theorem I1.4.6),
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b) substitute for the term dzdy in the integral (analogously to the equation
dz = ¢'(t) dt if we use the substitution = = g(t) in a one-dimensional integral).
Set D corresponds to some other set D' in the polar coordinates. Optimally,

every point [z,y] € D should have just one opposite point [r,] € D' (such that
z = rcosp and y = rsin ). However, since the sets of measure zero play no

role, the one-to-one correspondence between the points [z,y] € D and the points
[r,¢] € D' can be disturbed on a set of measure zero, both on the side of D and on

the side of D'.
Tt can be proved that dz dy must be substituted in this way:
dzdy = r drdp. (I11.5)

The factor r on the right hand side is a so called “Jacobian” (the abbreviation of the
“Jacobi determinant”) and you will find more about it in Section IIL.9.

The transformation of thé double integral to the polar coordinates has a sense
if it leads either to the simplification of the integrand (see example II1.3.6) or to the
simplification of the domain of integration (see example I11.3.7). It follows from the
geometric sense of the polar coordinates that r > 0 and ¢ can be taken from an
interval whose length does not exceed 27 (i.e. the interval (0, 2x)).

II1.3.6. Example. Evaluate the integral [[,(z +y) dzdy where
D = {[z,y] € Ez; 2> 0, y >0, 2 +y* <4}.

D is the intersection of the disk (with the center at the origin and radius 2) and
the first quadrant. It corresponds to the domain D' = {[r,p] € E3; 0<r <2, 0 <
@ < 7/2} in the polar coordinates. Thus, using the transformation (1I1.4), (IIL5), we

obtain:

[/;(a:+y)dzdy =.]‘[D'(;'C05<p+r sin @) r drdp =

2 /2 2
=1 j (f % (cos (,p+sin<,a)dtp) dr=/ r’[aintp—costp];ﬁdr=
o “Jo 0

2
= / 2l dr = %.
[

1) We have applied Fubini’s theorem.

I1L.3.7. Example. Evaluate the integral [[,(z? + y*)"/?dzdy where D is a
triangle with the vertices [0,0], [1,0], [1,1].

D can also be described as the set of all points [z,y] such that 0 < z < 1 and
0 < y < z. Transforming these inequalities to the polar coordinates, we obtain

O<rcosp<l, 0<rsing<rcosep. (11L.6)

The second inequality implies: 0 < sin ¢ < cos ¢ which means that 0 < ¢ < /4.
The first inequality in (IIL6) implies: 0 < r < 1/cos . Hence D corresponds to the
set D' = {[r,p] € E2;0 < ¢ < /4, 0 <r < 1/cos ¢} in the polar coordinates. Thus,
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using the transformation (I11.4), (IIL5) and afterwards applying Fubini’s theorem,
we obtain:

[l ff b= [
—_—dzdy = - = —
bVt Y D'rrrqo /0 (/0 r)dcp

_ /f,4 1 dw _ /Kfl cos dtp B 2) /\/‘3]2 dt -
b cosp o l-—sin®yp 5 1-¢

vif2, g 1
=1 SN = 1[_ Vi/2 2+
_2/[, (1—t+1+t)dt_2[ In(1-1)+In(1+1)], =3zl —

%) We have used the substitution sin ¢ = ¢, cos ¢ dyp = dt.

=

9

I11.3.8. Generalized polar coordinates in E;. We shall denote these coordinates
again by r, ¢. They are analogous to the polar coordinates, though their origin
need not be the same as the origin of the Cartesian coordinates and they are not
“isotropic”, i.e. the rate of change of r is different in the z-direction and in the y-
direction. The relation between the Cartesian coordinates z, y and the generalized
polar coordinates r,  is

T =zxgt+arcosyp, y=1yy+brsing (IIL.7)

where (2o, 1] is a given point in E; and a, b are positive constants.

By analogy with (IIL.5), it can be proved that if we transform a double integral
to the generalized polar coordinates then dz dy must be substituted in this way:

dzdy = rab drdp. (1I1.8)

The factor rab on the right hand side is again the “Jacobian”, and it will be explained
in Section IIL.9.

The transformation of a double integral to the generalized polar coordinates
usually simplifies the integral if the integrand depends on z and y through the ex-
pression (z —29)%/a® + (y — yo)*/¥* or if the domain of integration is the interior
of an ellipse (z —0)?/a® +(y — yo)?/b* =1 or a sector of an ellipse.

IIL.3.9. Example. Evaluate the integral [,z dzdy where
D={[z,y) € Eg; (z—2)*+(y—-1)/4* < 1}. _
We can observe that if we use the transformation
z=2+rcosp, y=1+4+2rsing (II1.9)

then the points [z,y] fill up D if and only if the points [r,¢] fill up the set D' =
{lr¥] € Ez; 0 < r <1, 0 < ¢ < 2r}. Using transformation (111.9), equality
dz dy = 2r dr dp (following from (IIL.8)) and also applying Fubini's theorem, we get:

ffpzdzdy=j[DJ(2+rcw¢)drd¢=/oh(/01(2+rcoszp)dr)d(p=

2w 2w
= o [2r+%rzcosgo];dcp=f (241 cos p) dp = 4r.
0
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I1L.3.10. Remark. In fact, transformation (II1.9) is not a one-to—one Fnapping of
set D' onto set D in example II1.3.8. The one-to—one c?rrespondence is d1sturbed‘o.n
the subset D) = {[r,p] € Ea; r=0,0<¢ < 21r} of D'. (You can ob'se:rve that Dy is
a subset of the boundary of D'.) This is clear, because t:ransform_atmn (III:Q) maps
all points of D}, onto the point [2, 1] in D. Thus, the point [2,' 1] in D h?s m.ﬁmt;:ll.y
many opposite points in D' — i.e. all points of D{}: However, since ma(Dp) = 0, this
does not affect the existence and the value of the integral.

IIL4. Some physical applications of the double integral.

Suppose that a two-dimensional thin plate coincides with a me:a.surable set D'in
the zy-plane. The plane need not be homogeneous. It means that its planar dfans:ty
(amount of mass per unit of area) need not be constant. Let the planar density be
given by function p(z,y). The double integral enables us to define a.ndl evaluate some
fundamental mechanical characteristics of the plate. Suppose that p is expressed in

[kg - m™?]. Then we have:
Mus M= [[ padzdy Degl
D : _
Static moment about the z—axis M; = jj;) y p(a:,y) dedy [kg-m],

Static moment about the y-axis My = j[D:c -p(z,y) dzdy [kg m),

M, M

Center of mass [Zm,Ym) T = _M!'p Ym = ™ [m],

Moment of inertia about the z-axis Jr = j jD v*ple,y)dedy  [kg-m?],
Moment of inertia about the y—axis Jy = ] L z* - p(z,y)drdy [kg-m?],
Moment of inertia about the origin - Jo = ‘/:/I:"(:z:2 +9%) - p(z,y)dzdy [kg-m?).

Suggest a formula for the moment of inertia about a general straight line in E,
whose equation is az + by + ¢ = 0!

IIL5. The volume integral — motivation and definition. .
The three—dimensional Jordan measure and measurable sets in E;.

The theory of the volume integral is almost identical with the theory of the
double integral. The main difference lies in the simple fact that we have one more
dimension. Thus, we can repeat almost everything that was written abou_t t.he double
integral. The same holds for the three-dimensional Jordan measure. This is why we
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present the theory of the volume integral very briefly and we do not explain the
details. '

On the other hand, since one more dimension causes higher variety of possible
domains of integration as well as integrated functions, you will see that the methods of
evaluation of the volume integral, though their techniques are again based on Fubini’s
theorem and on the transformation to other coordinates, are usually technically more
complicated than in the case of the double integral.

III.5.1. Physical motivation. Suppose that we have a body whose density is
p(z,y,z). We wish to evaluate the mass M of the body. Suppose for simplicity that
the body has the form of the block B = {a,b) x (c,d) x (r,s).

If density p is constant then M =p-(b—a)-(d—c) x (s —r). (Why?)

However, in a general situation when the density is not constant, we can sub-
divide B into n smaller rectangular cells By, ..., B, by planes parallel to the coor-
dinate planes xy, 2z and yz. If the cells B, are “small enough” then we can appro-
ximate p by a constant on each of them. A possible value of this constant is p(Z;)
where Z; is some point from the cell R;. Then the approximate mass of cell R; is
p(Z;) - Az Ay; Az; where Az;, Ay; and Az; are the lengths of sides of R;. The
approximate mass of the whole body is

n

> p(Z:) - A; Dy; Az.

i=1 L
The exact value of the mass M of the body is equal to the limit of this sum as
n — +oo and the numbers Az;, Ay;, Az (i=1,2,...,n) tend to zero.

IIL5.2. A block in E; and its partition. If (a,b) is a bounded closed interval
on the z-axis, (¢, d) is a bounded closed interval on the y-axis and (r,s) is a closed
bounded interval on the z—axis then the set B =i(a,b) x (¢,d) x {r, s) forms a block
in E3. We can subdivide this block to n rectangular cells By, ..., B, by planes
parallel to the zy-plane, zz-plane and yz—plane. The system of these cells is called
the partition of B, P s
- .. If this partition is named P and if the lengths of sides of smaller cells By, ...,
By are Az, Ay, Az, ..., Azy, Ayn, Az, then the maximum of all these lengths
is denoted by || P|| and it is called the norm of partition P. '

11.5.3. Riemann suins and their limit. Let u = f(z,y, z) be a bounded function

a bounded set D C Es. Let B be the smallest block in E; whose sides are parallel
0 the zy—, z- and yz-planes and which contains D. Let P be a partition of B into
aller rectangular cells By, ..." B, whose lengths of sides are Az;, Ay, Az, ...,
Zn, AYn, Az,. These smaller cells can be numbered so that those of them which
e inside D are By, ..., Bm. Let.V be a system of points Z; € B; (i = 1,2,...,m).
hen the Riemann sum of function f on set D corresponding to partition P and

(fBV) = Y f(Z)- Aci Ay A

i=1
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