1IL1.3.10. Remark. In fact, transformation (II1.9) is not a one—to—o_ne fnapping of
set D' onto set D in example I11.3.8. The one-to-one c:)rrespondeuce is dJsturbed‘o-rf
the subset D) = {[r,¢) € Eg; 7=0,0<¢ < 2r} of D'. (You can ob'serve that Dy is
a subset of the boundary of D'.) This is clear, becausg ﬁra.nsform'atmn (III:Q) foaplys
all points of D}y onto the point [2,1) in D. Thus, the point [2,‘1] inD ha:s mﬁmt;1 y
many opposite points in D' - i.e. all points of L"{,1 However, since mz(Dg) = 0, this
does not affect the existence and the value of the integral.

IIL4. Some physical applications of the double integral.

Suppose that a two-dimensional thin plate coincides with a mt-?asura.ble set D.in
the zy-plane. The plane need not be homogeneous. It means that its planar dtanmty
(amount of mass per unit of area) need not be constant. Let the planar density be
given by function p(z,y). The double integral enables us to define a.nd‘eva.luate some
fundamental mechanical characteristics of the plate. Suppose that p is expressed in

[kg - m~%]. Then we have:

Mass M = ffpp(w,y) dzdy [ke],

M, = ij)y-p(w,y'i dedy [kg-m],

Static moment about the z—axis

Static moment about the y-axis

My = [[ 2 pta)dsdy kg

My =Y )
Center of mass [Zm,Ym) Im =0 Ym =31 )

Moment of inertia about the z-axis J; = .[/D v?plz,y)dzdy [kg-m?],
Moment of inertia about the y-axis Jy = / [D z?. p(z,y)dzdy [kg-m?),

Moment of inertia about the origin - Jo = j/);(zz +v°) - plz,y)dzdy [kg-m?].

Suggest a formula for the moment of inertia about a general straight line in E,
whose equation is az + by + ¢ = 0!

IIL5. The volume integral — motivation and definition. .
The three—dimensional Jordan measure and measurable sets in Ej.

The theory of the volume integral is almost identical with the theory of the
double integral. The main difference lies in the simple fact that we have one more
dimension. Thus, we can repeat almost everything that was written abou_t the double
integral. The same holds for the three-dimensional Jordan measure. This is why we

56

present the theory of the volume integral very briefly and we do not explain the
details. '

On the other hand, since one more dimension causes higher variety of possible
domains of integration as well as integrated functions, you will see that the methods of
evaluation of the volume integral, though their techniques are again based on Fubini’s
theorem and on the transformation to other coordinates, are usually technically more
complicated than in the case of the double integral.

II1.5.1. Physical motivatioﬁ. : éhppoée that we have a body whose density is
p(z,y,z). We wish to evaluate the mass M of the body. Suppose for simplicity that
the body has the form of the block B = (a,b) x (¢,d) x (r,s).
If density p is constant then M =p-(b—a)-(d—c) x (s —r). (Why?)
However, in a general situation when the density is not constant, we can sub-
divide B into n smaller rectangular cells By, ..., B, by planes parallel to the coor-
dinate planes ry, zz and yz. If the cells By are “small enough” then we can appro-
ximate p by a constant on each of them. A possible value of this constant is p(Z;)
where Z; is some point from the cell R;. Then the approximate mass of cell R; is
p(Z;) - Az; Ay; Az; where Az, Ay; and Az; are the lengths of sides of R;. The
approximate mass of the whole body is :
n VL "
> 6(Zi) - Azi Ay Az
=1 L
The exact value of the mass M of the body is equal to the limit of this sum as
n — +oco and the numbers Az;, Ay;, Az (i =1,2,...,n) tend to zero.

IIL5.2. A block in E; and its partition. If (a,b) is a bounded closed interval
on the z-axis, (c,d) is a bounded closed interval oni the y—axis and {r,s) is a closed
bounded interval on the z—axis then the set B ={a, b} x (¢,d) x {r, s} forms a block
in Es. We can subdivide this block to n rectangular cells B, ..., By, by planes
parallel to the zy-plane, zz-plane and yz—plane. The system of these cells is called
~ the partition of B. B
If this partition ig named P and if the lengths of sides of smaller cells By, ...,

B,. are Azy, Ayy, Az, ..., Azyn, Ayy, Az, then the maximum of all these lengths
is denoted by ||P|| and it is called the norm of partition P.

- 1I1.5.3. Riemann suins and their limit. Let u = f(z,y, z) be a bounded function

a bounded set D C Es. Let B bé the smallest block in E; whose sides are parallel
0 the zy—, zz- and yz-planes and which contains D. Let P be a partition of B into
maller rectangular cells By, ..."B, whose lengths of sides are Az;, Ay, Az, ...,
Azn, Ayn, Az,. These smaller cells can be numbered so that those of them which
e inside D are By, ..., By. Let.V be a system of points Z; € B; (i = 1,2,...,m).
hen the Riemann sum of function f on'set D corresponding to partition P and
stem V is

s(f,R,V) ‘= i f(Z.) . Az;_"Ay.- Az,
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We say that number S is the limit of the Riemany sums s(f,.I.’, V) as ||P|| — 0+
if to every given € > 0 there exists § > 0 such that for every partition P of B and for

every choice of V, |P|| < & implies |s(f, P, V) — 5| < e. We write:

i V) = 8§. ~ (11L10)
leﬁr_?w s(f,P,V) _

IIL5.4. The volume integral. If the limit in (IIL.10) exists, then function fis
called integrable in set D and S is called the volume integral of function f on D. The
integral is usually denoted as

f/ flz,y) de dy dz or fjpfdxdydz.
D

You may also find another name for the volume integral in literature: - the
triple integral.

IIL5.5. A measurable set in E; and its Jordan measure. Suppose that_ D is
a bounded set in Es. We say that D is measurable (in the sense of Jordan) if the
constant function f(z,y,z) = 1 is integrable on D. In this case, we call the number

ms(D) = ffDdzdydz

the three-dimensional Jordan measure of set D.

ms(D) has an important geometric meaning — it defines and evaluates the

volume of set D.

IIL.5.6. Some sets whose three—dimensional Jordan measure is zero. The
following sets in E3 have the measure equal to zero:

a) Sets consisting of a finite number of points or bounded curves.

b) Graphs of continuous functions z = w(z,y) or y = ¥(z, 2) or & = y(y, z) defined
on bounded measurable sets in Es.

¢) So called simple smooth surfaces, respectively simple piecewise-smooth surfaces
(see Section V.1).

Usually, if M is a set in E¢ (with k = 1, 2 or 3) and we say that M has measure
zero, we mean that the k-dimensional measure of M is zero, i.e. mi(M) =0.
IIL.5.7. Theorem. a) If Ny, Ny, ..., N, are sets in E3; whose measure is zero then
ms (u;*___l N.-) =0.

b) If M CN and my(N)=0 then ms(M)=0.

IIL.5.8. Theorem. (A sufficient and necessary condition for measurability

of a set in E;.) A bounded set D C E3 is measurable if and only if mg(8D) =0
(where 8D is the boundary of D).
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IIL.6. Existence and important properties of the volume integral.

The two statements “f is integrable on set D* and “the volume integral
[Jp fdzdy exists” say exactly the same.

IT1.6.1. Existence theorem for the volume Integral. Let D be a measurable
set in B3 and let f be a bounded function on D whose set of discontinuities has
measure my equal to zero. Then f is integrable on D.

Specifically, if D is a measurable set in E3 and f is a bounded continuous function
on D then f is integrable on D,

I11.6.2. Important properties of the volume integral.

a) (Linearity of the volume integral.) If functions f and g are integrable on
set D C E3 and « € R then

fj/D(f+g)dzdydz= //Lfdzdydz{-.///ugdmdydz,
//La-fdxdydz=a.f/D'fdzdydz.

b) (Additivity of the volume integral with respect to the set.) If Dy and
D; are measurable non-overlapping sets in E3 (i.e. m; (Dl n Dg) =0)and f is
integrable on Dy and D; then

flefhdydz+/fD1fdxdydz = jj/nlup,fdzd”dz'

¢) If function f is integrable on set D € E; and function g differs from f at most
on a set whose measure is zero, then g is also integrable on D and

ijyhdydz=/fodzdydz.

d) IfD C E; and ma(D) = 0 then /jj fdzdydz=0
for every function f. D

Thus, the behaviour of the integrated function on a set of measure zero does not
affect the existence and the value of the volume integral.

I11.7. Evaluation of the volume integral — Fubini’s theorem and
transformation to the cylindrical and to the spherical coordinates.

Fubini’s theorem for the volume integral transforms the evaluation of the integral

to the computation of one single and one double integral. It can be applied if the
domain of integration D is a so called elementary region:
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1IL7.1. Elementary region in E;. a) Let D;y be a measurable closed set in
E; and z = ¢i(z,y) and z = $2(z,y) be continuous functions on Dyy such that

$1(z,y) < pa(z,y) for all [z,y] € Dzy. Then the set
D = {[z,4,2] € Es; [2,4] € Day, $1(z,9) S 2 < a(2,9)}
is called the elementary region relative to the zy-plane. (See Fig.5.)

We can-also define quite analogously an elementary regioﬁ relative to the zz—
plane and an elementary region relative to the yz-plane. Try to write down these

definitions for yourself! z 4

Fig. 5

Elementary regions are measurable sets in E;3. The idea of integrating function
f(z,y, z) on the elementary region relative to the zy-plane is the following: Imagine
that we cut the region into infinitely many vertical line segments. One of them is the
line segment PQ in Fig. 5. We first integrate f on each such segment as a function of
one variable z — we obtain F(z,y) = f;'((:_:')) f(z,y,z)dz. This depends on z and y
because the position of the line segment PQ) depends on z and y. Then we integrate
F(z,y) as a function of z and y on set Dyy. Thus, we obtain formula (IIL.11) (see

the next paragraph II1.7.2).

IIL7.2. Fubini’s theorem for the volume integral. Let D be the elemeptary
region relative to the zy—plane from paragraph IIL.7.1. Let function u = f(z,y,z) be

continuous on D. Then
$a(z,y)

f/Df(x,y,z) dodydz = fjpu(/m,y) f(@,y,2) dz) dedy.  (IL1Y)

Formulate for yourself analogous theorems for the integration on the elementary
region relative to the zz—plane and the elementary region relative to the yz—plane!

IIL.7.3. Example Evaluate the integral [[[,(z+2) dzdydz where D is the region
in E3 bounded by the surfaces 22 + y2 =2, 2z = —2-z,z= 2+y.

The given surfaces divide E3 into more regions, but only one of them is bounded
and this is D. It is a part of the cylinder z? +y? <2 bounded by the plane z = —2—-=z
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from below and by the plane z = 2 + y from above. Thus, D is the elementary region
relative to the zy-plane with Dyy = {lz,y] € E3; 22 +y* < 2} and ¢y(z,y) = —2~z,
¢2(z,y) = 2 + y. Applying Theorem II1.7.2, we obtain

3 2+y
//f(z+2)dxdydz = f/ (f (2 +2) dz) dady =
D ‘ Dey VW—-2-2
= f f [2/2+2:)*tY dzdy =
z+y?<2
VvZ o pam
=1) ]0 (./; (%rz sin® @ — %_rz ccsgtp+4r sin ¢ — 4r cos p+8)rdcp) dr =

=/ 167 r dr = 16x.
0

1) We transform the double int'e'gr:a.l on D,y to the polar coordinates.

IIL.7.4. Remark. Fubini’s theorem III.7.2 transforms the volume integral to the
composition of the two integrals — the outside double integral and the inside single
integral. It is sometimes quite useful to do this conversely, i.e. to transform the
volume integral to the outside single integral and the inside double integral. We
allow ourselves to omit the corresponding theory (because it is quite analogous to
the contents of paragraphs II1.7.1 and IIL.7.2) and we show this procedure:in the
following example. c -

IIL7.5. Example. Evaluate the volume V' of the oblique cone C' = {[z,y,2] €
Es; 0< 2 <5, (z—22)* + % < 22} . _

The volume of C is

Vo [ffsstte = [ e =0 e
=2 ‘Ls(‘[uz(lhrzdzp) dr) dz = /oswzsdz = 622”.

2) The inside double integral is trans-
formed from the Cartesian coordinates
z, y to the generalized polar coordina-
tes r, ¢ by the equations r = 2z 4
Z cos ¢, Yy = Z sin @.

I11.7.6. Cylindrical coordinates in
Es. The cylindrical coordinates of
the point X = [z,y,2] € Ej are r,
©, w whose geometric meaning is the
following: ; r, @ are the polar coordina-
tes of the point [z,y] in the zy-plane Fig. 6
and w = 2. Thus, the relation between i
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cylindrical coordinates are:
(1I1.12)

the Cartesian coordinates &, y, z of point X and its

r=rcosyp, y=rsing, 2z=uw

When transforming a volume integral to the cylindrical co?rdiflatcts, we must
also substitute for dz dy dz. It can be proved that the right substitution s

dedydz = r drdpdw. : (II1.13)

See Section 1119 for more details.)
( It follows from the geometric sense of r, and w that r > 0, ¢ can be taken 1from
any interval whose length is at most 27 and w € R.' The tra..tlsformat:.}o:}ll ofda vo ‘u.n:’ei:'
integral to the cylindrical coordinates usua.llj( sunphﬁe? the 1.ntegra1 1d tde og:m:; !
integration is a cylinder (or a sector of2a+cy£mder) or if the integrand depends
and y mainly through the expression 2% +y°.

yThe transformation of the volume integra.l II7, nf _dx dy dz leaﬁs ‘:lczi an;};e;
integral, in variables r, ¢, w, on a set D'. Optlmallj-(, equations (II.I.12) ; t(})l c te e s
one—to-one mapping of D' onto D._N_evertht-aless, since the behaviour of the in ;g;l o
on a set of measure zero (the thrée-dimensional measure mgy because we are e:i ing
with the volume integral) does not affect the integral, the one-to-one corresp?]ntgnce
between the points of D' and D can be dislturbed on a set of measure zero X 0 thcm
the side of D' and on the side of D. This is also vahd for tra.ns.formatlons g o e:
coordinates (spherical, generalized cyliné!.rica.l, generalized spherical, etc.) and so w
will not deal with it in detail in this section.

1IL7.7. Example. Find the volume of the region D bounded below by the plane

2 = 0, laterally by the circular cylinder z? + (y — 1) = 1, and above by the

paraboloid z = z? +y2.

The volume of D is identical with the three—dimena'ional Jordan measure (;j'
D (see paragraph I1L5.5). So we denote it by ms(D). It is .def.ined b}]rl thelxint:g'(r:al
[fJp dz dydz. Let us evaluate this integral by the transformation to the cylindr

coordinates. - o PR o
i z
Region D is a set of points [z,y,2z] € Es such tha <z = :
2 +(y €1)2 < 1. The last inequality is equivalent to z? +y? — 2y < 0. Transforming
it to the cylindrical coordinates r, ¢ and w, we obtain
r? —2rsinp <0,
r < 2sin .
The inequalities 0 <z <z?+y* are equivalent to
0<w<ri
i ities gi imi i tion with respect to r and w. The -
These inequalities give the limits of integral and
ﬁm?:: of eigltegraa,f.i01:l can be found by means of the orthogonal prOJectlox} of DTt]:;n
the zy—plane. The projection is the disk D, with the center [0,1] and radius 1. The

angle made by.all possible straight lines passing through the origin and entering D,g,
measured from the positive part of the r—axis, runs from ¢ = 0 to ¢ = m. Hence the

volume is
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w p2sinp pr? x
ma(D)=//f a'—'tdydz=f / j r dw dr d(p:/ 4 sin' p dip = B
D o Jo 0 0

II1.7.8. Spherical coordinates in
Ej3. The spherical coordinates of the
point X = [z,y,2] in E; are r, ¢ and X
¥. They have this geometric sense: r |
is the distance of point X from the |
origin O. ¢ is the angle between the r / ) 4
line segment OX' (where X' is the

orthogonal projection of point X to ~ '

the zy-plane) and the positive part 7] :
of the z-axis (measured from the z— X
axis). ¥ is the angle between the li- ¥

ne segment OX' and the line segment
OX (measured from the line segment £
OX'. This geometric interpretation of
the spherical coordinates easily leads Fig. 7
to the following equations: o

z=rcosdcosp, y=rcosdsiny, z=rsind. (IIL.14)

When transforming a volume integral from the Cartesian coordinates z, y, z to
the spherical coordinates r, , 9, it is also necessary to transform dz dy dz. It can be

proved that
dzdydz = r? cos 9 drdpdd. (II1.15)
(See Section IIL.9 for more details.)

It follows from the geometric sense of r, ¢ and ¥ that r > 0, ¢ can be taken from
any interval whose length is at most 27 and ¥ can be taken from an interval whose
length does not exceed 7 (usually (—x/2,7/2)). The transformation of a volume
integral to the spherical coordinates usually simplifies the integral if the domain of
integration is a ball or a sector of a ball (a ball is the interior of a sphere) or if the
integrand depends on z, y and z mainly through the expression z? + y2 = 22.

TIL7.9. Example. Find the volume of the upper region-D cut from the ball z2 +
y?> + 2% <1 by the cone z%= %(;ﬁ +42).

' ,"I:‘Ihe inequality defining the ball in the spherical coordinates r, ¢ and ¥ is simple:
r < 1. Substituting from (II.14) to the equation of the cone, we get:
r? sin’d = 312 cos?d (cos? ¢ + sin? ®),
sin®d = § cos’d,

tan 9 = +/3/3

which means that ¢ = £ /6. Since D is the region above the cone, the Y—coordinates

of its points satisfy: ¢ € (x/6, 7/2). Finally, all possible straight lines passing
through the origin sweep over D as the angle ¢ runs from 0 to 2r. Thus,
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1 p2r pw/2
ma(D):/dezdydz:L '/B //sarz cos 9 d¥ dp dr = 3.

IIL.7.10. Generalized cylindrical coordinates in E;. We will again denote these
coordinates of the point [z,y, z] € Es by r, ¢, w. They are analogous to the cylindrical
coordinates, though their origin need not coincide with the origin O of the Cartesian
coordinates. r, ¢ represent the generalized polar coordinates of the point [z, y] in the
zy-plane and w is a linear function of z (and vice versa). Thus, the relations between
the Cartesian coordinates and the generalized cylindrical coordinates are:

z=mzg+arcosp, y=yo+brsing, z=z+cw, (I11.16)

where [zo, Y0, 2] is a chosen point in E (the origin of the generalized cylindrical
coordinates) and a, b, c are positive parameters.

Analogously to (II1.8) and (II1.13), when we transform a volume integral to the
generalized cylindrical coordinates, we must substitute for dzdydz in accordance
with the following equation:

dzdydz = aber dr dp dw. (II1.17)

(See Section I11.9 for more details.)

The transformation of a volume integral to the generalized cylindrical coordin-
ates can simplify the integral either if the domain of integration is a part of the
elliptic cylinder (z — z0)*/a® + (v — y0)?/¥* < R? or if the integrand depends on z
and y mainly through the expression (z — z0)?/a® + (y — yo)*/5*.

IIL.7.11. Generalized spherical coordinates in E;. We will denote these coordi-
nates of the point [z,y, z] € E3 in the same way as the spherical coordinates, i.e. by r,
@, w. The difference between the spherical coordinates and the generalized spherical
coordinates is that the generalized spherical coordinates need not have their origin
at the same point as the Cartesian coordinates and they are not “isotropic”. This
means that r can increase with the distance from the origin with the different rate
in the z-direction, y—direction and z-direction. The relations between the Cartesian
coordinates and the generalized spherical coordinates are:

z=x9+arcosdcosp, y=4vyp+brcosdsing, z=2z +ecrsind, (I.18)
where [z, Y0,20] is a chosen point in Ey (the origin of the generalized spherical
coordinates) and a, b, ¢ are positive parameters.

Analogously to (I11.8) and (IIL.15), when we transform a volume integral to the
generalized cylindrical coordinates, we must substitute for dzdydz in accordance
with the following equation:

dzdydz = aber?® cos ¢ drdyp dw. (I11.19)

(See Section II1.9 for more details.) :

The transformation of a volume integral to the generalized spherical coordinates
usually simplifies the integral either if the domain of integration is the ellipsoid (z —
20)?/a® + (y —yo)? /6% + (2 — 2z0)? /e < R? (or its sector) or if the integrand depends
on z, y and z mainly through the expression (z —z9)?/a® + (y —yo)?/b* + (2 — z0) /.
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IIL.8. Some“physical applications of the volume integral.

Suppose that a three—dimensional body has the form of a measurable set D in
E;. The body need not be homogeneous and so its density (amount of mass per
unit of volume) need not be constant. Let the density be given by function p(z,y, 2).
The volume integral enables us to define and evaluate some fundamental mechanical
characteristics of the body. Suppose that p is expressed in [kg - m™]. Then we have:

Mass M = /jj p(.';,",y, z},‘d.‘z,dy‘t.iz [kg],
D ' .
Static moment about the xy-plane M., = //:/ z-p(z,y,2z) dzdydz [kg-m),
D
Static moment éboixt the a:z—'plane: M,, = fff y-p(z,y,2) dedydz  [kg-m],
D

Static moment about tl.m. yz-plane My, = //j z-p(z,y,2z) dedydz  [kg-m],
D

Center of mass [Zm, Ym,zm] Tm = —A—Jﬁi, Ym = Aj;’, = Jl;f;, [m],

Zm =
Moment of inertia about the z—axis J, = / / /;) (v*+7*) p(z,y, 2) dz &y dz [kg-m?],
Moment of inertia about the y—axis J, = [ j D(:r2+z_2:) p(;:;y, 2) da: dydz [kg-m?),
M.oment of inertia about the z—axis J, = /:/ D(z“-}-y’) oz, y,2) dz dy dzl [kg -m?],
Moment of inertia about the origin Jy = / fD (m’ +y2 +27) p(x, 3}, z) dz dydz kg - m?).

Try to suggest the formula for the moment of inertia about a .general straight
line in E3 whose parametric equations are z = zp + uit, y = yp + ugt z = zp + ust;
teR! .

ol

IIL9. A remark to the method of substitution in the double and volume
mtegra] i

The idea of the method of ‘subst".i.tution is the same in the double and in the
volume integral. This is why we shall treat it together for both types of integrals in
this section. Thus,

— E; will mean either E; (if K =2) or Ej (if k¥ = 3),

- the integral [ will mean either [f (if k=2) or [[[ (if k = 3),

- point X € E; will denote either [z1,2;] (if k = 2) or [z1,22,2s], (if k = 3)
and
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— dX will denote either dz;dzy (if k=2) or dz;dwsdzs (if k= 3).

We already know some widely used substitutions — they are given by equa-
tions (IIL.4), (IILT), (I1IL12), (111.14), (IIL.16) and (II1.18) and they are c.;a.!led the
transformation to the polar (or generalized polar) coordinates, transformation to the
cylindrical coordinates, etc. We will explain the method of substitution on a general
level in this section. :

Suppose that D C Eg (k = 2 or k = 3) and we have to evaluate the inﬁ;egra.]
Jp f(X) dX. If every point X € D can be expressed as X = F(Y') where points ¥’
are taken from some other set D' C Ej then the integral can be transformed to the
integral in the variables ¥ on the domain of integration D'. However, it is clear that
this can be done only if both the integrals on D and D' exist and mapping F has
certain properties. We will discuss them in the following. o

I11.9.1. Regular mapping and its Jacobian. Let D and D' be domains in Ej.
Suppose that F is a mapping of D' to D. Equation X = F(Y) means
1 = di(y1,¥2), 2= ¢a(yr,y2) for k=2,
21 = ¢1(y1, ¥z, ¥3)y T2 = ba(y1,¥2,¥8), T3 = da(y1,v2,53)  for k=3

The determinant

, d¢;
JF(Y) = ;%(Y)L,j:],z (fork=2) or Jr(Y)= aj,- (}’)“_Fl’:‘3 (for k = 3)

is called the Jacobian or the Jacobi determinant of mapping F.

Mapping F is called regular if functions ¢; (i = 1,20ri = 1,2, 3) have continuous
partial derivatives in set D' and J#(Y) # 0 in all points Y € D'

1IL9.2. A one-to—one mapping. You already know the notion of a one-to-one
mapping. Mapping F is called one-to-one if
Y, ZeD, Y#Z = F(Y)#F(2).

II1.9.3. Example. Verify that the mapping given by equations (IIL.4) is a one-to—
one regular mapping of the open rectangle D' = {[r,¢] € Ea; 7 €(0,2), ¢ € (0,2m)}
onto the domain D = {[z1,z2] € Eg; 22 +23 < 4} —{[z1,72] € E3; 1 € (0,1), T3 =
0} (D is an open disk (with its center at the origin and radius 2) minus the line
segment connecting the points O = [0,0] and P = [2,0]. Sketch a figure!

The one—to—one correspondence between the points [z1,22] € D and [r,¢] € D'
is obvious. To verify the regularity of mapping (IIL.4), let us evaluate the Jacobian
of this'mapping. Equations (IIL.4) can also be writien as

71 = ¢i(r,p) = rcosp, 2 = ¢a(r,p) = rsingp.

The Jacobian is:

on ok
r' dp | |cosy, —rsing|

Iine) = Op2 94 " |sing, rcose o
ar’ B¢
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Now it is seen that functions ¢; and ¢, have continuous partial derivatives in domain
D' and r # 0 in D'. Thus, mapping (IIL.4) is regular in D’.

I11.9.4. Theorem. Let X = F(Y) be a one-to-one regular mapping of domain
D' € E} onto domain D € Ei. Then

[rxax = [ sEwy-usway, (11.20)
D D!
if both integrals exist.

I11.9.5. Remark. We already know that adding (or subtracting) a set of measure
zero to the domain of integration does not influence the existence or the value of the
integral. This enables us to generalize Theorem II1.9.4:

If the assumptions of Theorem II1.9.4 are satisfled and A, respectively A', are
sets in By which differ from D, respectively D', only in sets of measure zero (i.e.
mi((A—D)U(D - A)) = m((A' — D')U (D' — A")) =0) then

f f(X)dX = f F(F) - |T=(Y)] dY, (111.21)
A A’

if both integrals exist.

It is seen from equations (II1.20) and (IIL.21) that dX in the integral on the
left-hand side changes to |J#(Y){ dY in the integral on the right-hand side. We have
already shown that if k = 2 and ¥ = [r, ¢] represents the polar coordinates then the
Jacobian is equal to r (see example II1.9.3). Thus, the equation

dX = |JF(Y)| dY (1m1.22)

implies, as a special case, equation (III.5). Computing the Jacobians of mappings
(IIL.7), (IIL12), (III.14), (IIL.16) and (III.18), we can see that general equation (II1.22)
also implies special equations (II1.8), (IIL.13), (II1.15), (II1.17) and (II1.19).

II1.10. Exercises.

1. Do the following integrals exist?
dz dy
———; D={(0,1 0,1
Jf s b= xon
sin(z? + ¢?)

— 97 . D= L2
_/:/;J 22+ 32 dzdy; D= {[z,y] € Ey; z* +y* <9}

z
[ wi et D= (el €By 44 <9)
dz dy :
= D is the square PQRS where P =[1,2], Q@ = [3,2], R=[3,4],
p(1-zy) §=1,4]

z?2 y? 23 s gyl g8
jfjj;\/l—4 - % - = dedyds; D_{[a:,y,z]EEs, T+?+E<1}
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]f/ VAT + 2 dzdydz; D ={[a,y,2] € Ey; w? +3* + 2 < 0}
D

2. TFind the area of the region R in the zy—plane enclosed by the curves

a) y=2z+4, y=4-2°

¢) y=412, y=12% y=4 d) y¥*=4+z, 2+3y=0

f) 224y =2z, 2?4y =4z, y =7,
y=0

b) zy=1, y=2, =4
¢ y=lnz, z-y=1, y=-1

3. Find the area of the region in zy-plane bounded on the right by the parabola
y = z?, on the left by the line z 4y =2, and above by the line y =4.

4. Find the volume of set R in Eg if

a) R is the region under the paraboloid z = z? +y?, above the triangle enclosed
by the lines y =2, 2 =0, 4y =2, in the zy-plane

b) R is the region under the parabolic cylinder z = z*, above the domain enclosed
by the parabola y =6 — z? and the line y =z, in the zy-plane

c) Risthe region in the half-space z > 0 bounded by the surfaces z? +y?—2? = 0,
z=6—2% -7

d) R is the regmn in the half-space z > 0 bounded by the surfaces az = 2% 4 32,
22 +y? + 2% =242, (a>0)

e) R is the region bounded by the surfaces y* = 4a® — 3az, y*® = az, z = h,
z=—h, (a>0, h>0)

f) Ris the region bounded by the surfaces z?+y? =2, 22 +y? =22, 2 =0

5. Evaluate the following integrals.

a) / (14 ) dzdy; D is the region in E, enclosed by the lines y = z? —4,
y=—3z

_dzdy _
b) jj G D=3 x(2)

c) / f zy dzdy; D is the region in E; enclosed by the line y =z —4 and by the
D parabola y? =2z

o [ff@+v+a dads

e) fff z drdydz; V is the region in E3 bounded by the surfaces z =0, y =0,
v 2=0, y=2, z+z=1

f) / f / zy?2® dedydz; V is the region in E; bounded by the surfaces z = zy,
L2 y=z, =1, z2=0

V =(0,1) x (0,2) x (0,3)

g) /f/ ey’ zdedydz; V={[¢)y,z] €Bs; 0<2<1,0<y<z 0<2z<zy)
v
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h) ///ycos(:t+z) dzdydz; V is the region in E; bounded by the surfaces
v yz\/Ea y=0, z=0, I+Z=ﬂ'/2

i) f/ V1-2? -yt dedy; D= {[z,y) € Eg; 2* +* <1}

b (3 + 7 y=2:r: and by the circles 22 +y? = 4z, 2% +y? =8¢

k) ffyd:ndy; D is the upper half of the disk (z —a)? +y% < a? (a>0)

#
/j z dzdy; D is the sector of the disk z* +y? < a }2 consisting of the points
[z,y] such that = >0 and —:cS\/_ygl

m) f/j Va? + 92 + 22 dedydz; V is the ball e +yt+22 <d?, (a>0)
v .

n) f f / (z+y+2)?dzdydz; D is the region in the half-space z >0 bounded
. by the para.bolmd z=1(z*+y?) and by the
sphere 22 + y2 + 22 —-3

o) jjj zdzdydz; V is the region in E bounded by the surfa.ces Zl= \/:ﬁ + y?

and z=1

P) /jf (z* +y*) dzdydz; Dis the region in E; bounded by the surfaces
22 +y? =22 and 2=2

qQ) j/[ = ta +——) dzdydz; V is the interior of the ellipsoid

2?fa® + [P + 22/ =1, (a>0,

b>0, c>0)
6. Find the center of mass of the homogeneous regions in E; bounded by the curves
a) y=sinz, y=0; z € (0,x), b) 22 +y? =a? y=0; (y>0, a>0),
¢) y? = az, z=0, v=a; (y>0,a>0), d)y*=4dz+4, y*=-2z+4.

7. Evaluate the moment of inertia with respect to the z-axis of the homogeneous
region in E;, bounded by the lines y =2/2, y=a, z =4 (a >0). (The density
is p=1.) .

8. Evaluate the mass of the body in E; bounded by the surfaces

a) 2=0,z=a,y=0,y=b2=0,z=c(a>0, b>0, ¢ > 0) if the density is
P@,,2) =2 +y + 1,

b) 2z+z—2a,z+z—a,y —az,y—O(fory>0) if a > 0 and the density is
p(:c,y,z)—y,

c) z? +y? + 2% = a?, :t:’+y2+z’I“I—-"ic‘t2 (a > 0) if the density is p(z,y,2) =

2/y/22 +y2? + 22,
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