IV. Line Integrals

IV.1. Simple curves.

We need to specify exactly what we understand under the notion of a curve (1.e.
a line) before we begin to deal with line integrals, A variety of definitions of many
types of curves appear in literature. We will restrict ourselves to two types of curves:
so called simple smooth curves and simple piecewise-smooth curves. They are also
called simple regular or simple piecewise-regular curves.

The idea of theldgaﬁl‘ﬁtion of a simple smooth curve is the following: Imagine that
a mass point moves in E; or in B in a time interval {a, b) and its position at time t is
P(t). Then P is a mapping of the interval {a, b} to By (with k = 2 or k = 3). Suppose
that the velocity of the moving mass point is continuous, bounded and different from
zero in all times t € (4, b). (This means that mapping P has a continuous, bounded
and non-zero derivative at all points ¢ € (a,b)). Suppose further that the mass point
cannot be at the same place at two different times, with a possible exception when the
motion starts and finishes at the same point. (This means that mapping P is one-to-
one in the interval (a, b) with a possible exception when P(a) = P(b).) Then the path
travelled by the mass point is called a simple smooth curve. The position function
P is called the parametrization of the curve. You will find the precise definition of a
simple smooth curve in paragraph IV.1.1.

Since P(t) (for fixed t) is a point in E; (where k = 2 or k = 3), it has two or
three coordinates. Let us denote them ¢(t), 9(t), respectively ¢(t), ¢(t), 9(2). Then
#, 1, respectively ¢, ¥, ¥, are the functions of one variable ¢ defined in the interval
{a,b). They will be called the coordinate functions of mapping P and we will write

P(t) = [g(£),%(1)] if k=2,
P(t) = [p(1),4(1),9(t)] if k=3,

The derivative of P with respect to the parameter will be denoted by the dot, in
accordance with the customs in physics. We will take the derivative for a vector and
we will therefore enclose its components in parentheses:

P(t) = ($(£),$(2)) i ks
P(t) = (qb(ﬂ,t‘b(t),??(i)) if &= 3.

The coordinate functions of parametrization P are also often denoted by z(t),
y(), respectively by z(%), y(¢), z(t).

IV.1.1. Simple smooth curve. Let P be a continuous mapping of a closed bounded
interval {a,b) to Ex (where k = 2 or k = 3). Suppose that

a) mapping P is one-to—one in the interval {(a,b}) with a possible exception when
Pla) = P, |
b) P has a bounded, continuous and non-zero derivative P in the interval (e, b).
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Then the set C'={X = P(t) € Ey; t € (q,b}} is called a simple smooth curve in
Ej. Mapping P is called the parametrization of curve C'

The simple smooth curve C is called closed if P(a) = P(b).

The vector P(t) is tangent to the simple smooth curve C' at every “interior” point
P(t) of curve C (i.e. point P(t) corresponding to ¢ € (a,b)). The vector P(t)/|P()|
is also tangent to C at point P(t) and moreover, its length is equal to one. We can
choose the orientation of curve C so that we put the unit tangent vector 7 to C at
point P(t)

i 7= —P(t) or al a
either 7= |P(t)| (for all t € (a,b)) (Iv.1)
or 7= ———}?(t) for all a,b)).

2] ( t€(a,0)) (Iv.2)

We say that curve C is oriented in accordance with its perametrization P if the unit
tangent vector 7 to C is given by formula (IV.1).

In other words, we say that simple smooth curve C is oriented in accordance

- with its parametrization P if the parametrization defines the motion along C in the

direction corresponding to the orientation of C.

If the simple smooth curve C is oriented in accordance with the parametrization

P then the point P(a) is called the initial point of C (we denote it 4,p. C') and the

point P(b) is called the terminal point of C (we denote it t.p. C).

If the orientation of C' is opposite to parametrization P then the position of the
initial and the terminal point of C is also opposite: i.p. C' = P(3) and £.p. C' = P(a).

A simple smooth curve € which is not closed can also be oriented so that one of
the points P(a), P(b} is chosen to be the initial point of C' and the second one to be
the terminal point of C.

Every simple smooth curve has infinitely many parametrizations. This is clear
if you take into account that every path can be travelled by infinitely many possible
motions.

IV.1.2. Example. Every line segment in E, is a simple smooth curve. For instance,
the line segment AB in B3 with A =[1,2,4] and B = [3,~1,7] can be parametrized
by the mapping
P(t)=A+t-(B-A) te(o1).

This means that the coordinate functions ¢, 1 and ¥ of parametrization P are:

T=¢(t)=1+2, y=o{t)=2-3t z=9t) =443 te(0,1).
The simple smooth curve C, identical with the line segment AB, is oriented in accor-
dance with the above parametrization if A =4.p.C and B =t.p.C.

IV.1.3. Example. The part of the parabola y = 22 + 1 between the points [1,2]
and [3, 10] (oriented from [1, 2] to [3,10]) is a simple smooth curve in E,. Its possible
parametrization is e.g. the mapping
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P oe=¢t)=t y=9)=t"+1] te(L3)

Since this parametrization defines the motion on the curve from its initial to its
terminal point, the curve is oriented in accordance with parametrization P.

IV.1.4. Example. Thearc z*+y? =9,z >0,y 2> 0, oriented from the point
[3,0] to the point [0, 3], is a simple smooth curve in Ey. Its possible parametrization,
generating the same orientation, is

z=¢(t)=3cost, y=1()=3sint; te(0,7/2).

IV.1.5. Example. The circle C : (z —3)® +¢* =4 in Ey (oriented counter-
clockwise) is a closed simple smooth curve. Its parametrization is for instance the

mapping
=¢(t)=3+2cost, y= z,f)(t) =2 sin\t; " te(0,2r).

You can easily verify that (' is oriented in accordance with this parametrization.

IV.1.6. Simple piecewise-smooth curve. Let Cf, ..., Oy be simple smooth
curves in Ey such that

a) tp.Ci =ip.Cy, £p.C2=1p.Cs, ..+, £.p.Criy =1p.Cm,

b) except for the points named in a) and except for the possibility when 7.p.C1 =
t.p.C, any two of the curves C, ..., Cp, have no more common points.

Then the set C =U%, C; is called the simple piecewise—smooth curve in Ey.

The orientation of the sim-
ple piecewise-smooth curve C is
given by the orientation of its
smooth parts C4, ..., Cm. We
put 4p. C (the initial point of C
C)=i.p.C; and t.p. C (the ter- 7
minal point of C) = t.p. Cp-

Eabadl

The curve which differs from "
a simple piecewise—smooth curve Fig. 8
C only by its orientation will be
denoted by —C.

A simple piecewise—smooth curve C is called Icloscd if &.p.C=tpC.

A simple piecewise-smooth curve in Eg (wherek=2o0r k =3)is a bounded set
in By whose k—dimensional measure my equals zero.

It is obvious that the notion of a simple piecewise-smooth curve is a generali-
zation of the notion of a simple smooth curve. Always when we will use the word
“curve” in the coming sections, we will have in mind a simple piecewise-smooth
curve. Similarly, a “closed curve” will mean a closed simple piecewise-smooth curve.
We will give more details about the curve if they are important.
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IV.2. The line integral of a scalar function.

A scalar function is a function whose values are scalars, i.e. in our case real
numbers. We use the name “scalar function” only in order to distinguish it from a
“yector function” which will be treated in the next sections.

IV.2.1. Physical motivation. Suppose that a spring or a wire has the form of
a simple smooth curve €' in E; (with k = 2 or k = 3). Suppose further that the
longitudinal density of the wire is p. p need not be a constant, and it is generally a
function of two variables z, y (if £ = 2) or three variables z, y, # (if & = 3). We wish
to evaluate the mass M of the wire.

The idea of evaluation of the total mass of the wire is exactly the same as the
idea of computation of the mass of a one-dimensional rod; used in’ paragraph IL.1.1.
We could explain it by means of a partition of the wire into many “short” pieces,
similarly as we divided the interval {a, b} into many “short” subintervals in paragraph
I1.1.1. However, let us use another approach — an approach based on the idea of the
partition of an interval into infinitely many “infinitely short” subintervals. This idea
was explained in Section IL7 (and we promised to come back to it). -

Thus, suppose that P is a parametrization of curve C' which is defined in the
interval {a,b). A typical “infinitely short” subinterval of (a,b) has the form (t,{+dt).
Parametrization P maps this interval to the “infinitely short” part of € with the end
points P(t) and P(t + dt). We can take this part for a line segment whose length is
ds = |P(t+dt)— P(t)| = |P(t)| dt. The mass of this segment is dM.= p(P(t))-ds =

p(P(1)) - |P(t)| dt. The total mass of the whole wire is ‘

M = f o(P(2)) !P(t)l dt.

IV.2.2. The line integral of a scalar functmn ona 51mple smoath:curve. Let
C be a simple smooth curve in E; or E; and P be its parametrization defined in the
interval (a,b). Let f be a scalar function defined on C'. We say that f is integrable
on curve C if the Riemann integral [ . F(P()) - |P(t)] dt exists. We denote this
integral by [, f ds and we call it the line integral of @ scelor function f on the
simple smooth curve C.

IV.2.3. Remark.' The integrability of function f on a simple smooth curve €' and
the line integral f af ds ‘are defined by means of a parametrization of curve C. Since
C can be parametrized in infinitely many ways, there arises the question whether the
integrability of f on curve C as well as the value of the integral [, f ds can depend
on a concrete choice of parametrization of C. The answer is NO. It can be proved
that neither the existence. nor the value of the line integral f,, f ds depends on the
concrete choice of parametrization of curve C.

IV.2.4. The line integral of a scalar function on a simple piecewise—smooth
curve, Let C be a simple piecewise—smooth curve in Ey or E; which is & union of
simple smooth curves Ci, Cg, ...} Cy (see paragraph IV.1.3). Let f be a scalar
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function defined on C. If function f is integrable on each of curves 1,0z .0y O

then we say that it is integrable on curve C and we put

/cfds = ;Lifds. (1V.5)

called the line integral of the scalar function f

The integral on the left hand side is
on the simple piecewise—smooth curve C.

The line integral of a scalar function is also often called the line integral of

the 13t kind.

Instead of [ f ds, we can also write for example [, f(z,y) ds (if C C E; and
f is a function of two variables) or fC fle,y,z) ds (if C C Eg and f is a function of
three variables). The symbal ds at the end of the integral can also be replaced e.g.
by dl, dr, etc.

1V.2.5. The length of a curve. If C' is a simple piecewise-smooth curve then the

value of the integral [ ds is called the length of curve C.
Specially, if C is a simple smooth curve and P is its parametrization defined in

the interval {a,b) then the length of curve C' is
b

(C) = f i f 1B()] dt. (1V.6)
c o

the line integral of a scalar function.
defined by means of the Riemann integral,
Let us mention only some of them:

IV.2.6. Some important properties of
Since the line integral of a scalar function is
most of its properties are quite analogous.

(Existence of the line integral.) If function f is continuous on curve C then
it is integrable on C' (i.e. the integral [ f ds exists).
b) (Linearity of the line integral.) If functions f and g are integrable on curve

'C and a € R then
f(f—{—g)ds:]fds-{-fgds,
C c (o]

La-fds=a-jcfds.

¢) If function f is integrable on curve C' and function g differs from f at most in &
finite number of points then g is also integrable on C and

Lgd.s:/cfds.

a)

dy Iffunction f is integrable on curve C' then it is also integrable on curve —C' and

f_cfds=jcfa’.s.

Assertion a) can be generalized in this way: If C is a simple piecewise-smooth
curve and f is continuous on each of its smooth parts then f is integrable on .

4

A A P e e

Assertion d) says that neither the exi
- e existence, nor the value of the line i
a scalar function depends on the orientation of the curve! S

I;ff.z.'?.' EvaJuatiop of the line integral of a scalar function. The line integral
o :Fctm? g ?I‘IL a simple smooth curve C' can be evaluated by means of a pa.ra.n%et
rization of C. Thus, if P is such a parametrization, defined i i |
function f is integrable on C then we can use the ,formu?a o e mfervl o B e

b
ds = B
L1 = [ ey b a. (v.7)
This formula follows immediately f iti ine i
MBI T e I\yfrzrgm the definition of the line integral on a simple

If C is a simple piecewise-smooth curve which is a union of simple smooth curve:
s

CI Cf'g e Cm (See pa.ragraph IV 1.6 thEI ] e 1. e .Iﬂ [} ()f
El ? ? [ i
> ) ( : ). I gral functl[)ﬂ f on curve

I\£.2.Sé Ex[grgp[}f.PC i[s the union of twoe line segments C; = OP and G; = PQ
where O = [0,0,0], P =[1,1,0] and @ = [1 i 1
s ] @ =[1,1,1]. Integrate the function flz,y,2) =

The simplest parametrizations of €| and C3 we can think of are:

C : Pi(t)=0+(PAO)t:[t:t:0]; t€<011)1
Ca: PR(t)=P+(Q-P)t=[1,1,] te(0,1).

We can easily find that Pi(t) = (1,1,0), Py(¢ :

d ; =LtV = U: Ual =
|Po(t)] = 1. Using formulas (IV.7) and {IV.zﬁ(),)We(obtairg w7 53 Rl e
z — 3y? = — 3
/C( yi+2) ds /Gl(w 3y +z)ds+L2(w—3y2+z)ds:

= 1t—3t2 " V243
]ﬂ( )\/idt+fo(t 2dt = -

IV.2.9. Example. Evaluate the line integral [ (2% +y) ds where C is the circle

2% 4+ (y — 5)% = 4. We do not speci :
=& pecify th i .
thie Tine itegral of wencalax functiOnyOn Z' .onenta.tlon of C because it does not affect

C can be parametrized e.g. by the mapping
c=¢(t)=2cost, y=¢()=5+2sint; 1€ (0,2n).
In order to use formula (IV.6), we also need to express |P(t)]:
|B(t)] = |(=2sint, 2 cos t) =2

Thus, we obtain

27
4 ;
/C(z —]—y)ds:/u (4 cos®t+5+2sint)-2dt = 207
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IV.3. Some physical applications of the line integral of a scalar function.

Suppose that a wire or a spring has the form. of a cgrve_C‘ in Ek (k=2 01;
k = 3). The wire need not be homogeneous and so its longil‘.t..ldmul c-lensxty {famc;tam
of mass per unit of length) need not be consta.jnt. ]:.Jet the d(!flSlt:y be given I.)Y unc blim
plz,y) (if k = 2) or p(z,y,2) (f k= 3). The line 1ntesrai of a HCE-L].B.I: fLTll?thD ena, gs
us to define and evaluate some fundamental mechanical characteristics of curve C.
Suppose that p is expressed in [kg - m™!]. Then we have:

1 k=2 Mass M = ];p(z,y) ds  [kg],

Static moment about the z—axis My = Ly -p(x,y) ds [kg-ml,

Static moment about the y—axis My = f z-plz,y)ds [kg-m),
c

. ) My _ M, { ]
Center of mass [Z’m,ym] T = 'ﬂ! Ym = '_J]Z_ s

Moment of inertia about the z-axis J; = /Gyz cpla,y)ds (kg - m?,
; : e
Moment of inertia about the y—axis Jy = /;'xz cp(z,y)ds  [kg - m?),

Moment of inertia about the origin Jo = f (® +y%) - plz,y)ds [kg-m?].
c

H. k=3 Mass M = /Cp(:i:,y,z) ds  [kg),

Static moment about the zy-plane Mg, = ]cz cplz,y,2) ds kg m),
Static moment about the xz-plane M. = /cy cp(zyy,2) ds kg m),
Static moment about the yz—plane My, = fcm o(z,y,2) ds  [kg-m],

M, sz _ Mf&'
Center of mass {mm,ym,zm]. G — —EA,E-, Ym = W, Zm = —M [mL

Moment of inertia about the z—axis J; = / (v + 22) - plz,y,z)ds  [kg-m?],
c
2
Moment of inertia about the y-axis Jy, = / (c* +2%) - p(z,y,2)ds  [kg-m?],
(o]
2
Moment of inertia about the z—axis J, = /(22 +y*) - p(z,y,2)ds  [kg-m?),
C
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Moment of inertia about the origin Jy = /{:cz +3* +22) pz,y,2)ds [kg - m?].
L4 :

Try to suggest the formula for the moment of inertia about a general straight
line in E3 whose parametric equations are & = zq + u1t, ¥ = yo + ugt, z = 29 + ugt;

teR!

IV.4. The line integral of a vector function.

A vector function in a-domain D C Ej is a mapping which assigns to every
point [z,y, 2] € D a vector. We shall denote vectors and vector functions by boldface
letters, like for example u, f, etc. However, you can also use @, f, ete.

If f is a vector function in domain D then f(z,y,2) has thrée components. We
shall denote them by U(z,y,z), V(z,y,2) and W(z,y,2). U, V and W are scalar
functions in domain D. We shall write - Y

f(xa Y 2’) = (U(m,y, z), V(-Iry-z)i W(zry;z)) or Simply f= (Ua V,W)

If we denote by i, j and k the unit vectors oriented suceessively in _a_ccordém?e_ with
the z-axis, the y-axis and the z-axis, we can also write: ; ot

f(z,y,2) =U(xay7z) i+V($)y)Z)j+W($ayr2)k o f=Ui+Vj+Wk

A vector function in domain D C Ej is also often called a vector field in D. Wé;
shall say that the vector function (or the vector field) f = (T, V, W) is continuous
(respectively differentiable) in D if all its components U, V and W are co_ntinqdf;s_‘
(respectively differentiable) functions in domain D.

The denotation and the used terminology in the case of twb—dimensiona_l vector
functions is analogous, the only difference being that we have one variable ind one
component less.

IV.4.1. Physical motivation. Suppose that a body moves along a curve €' due to
the action of a force f. We wish to evaluate the work A done by force f along curve
C'. The force is generally the function of three variables z, y and z. Let us apply
the idea of an “infinitely small” positive number explained in Section II.7 and let us
imagine that curve C' can be decomposed to infinitely meny “infinitely short” parts.
A position of a typical part is [x,y, z|, its length is ds and the unit tangent vector
to C' at point [2,y,2] is 7(z,y, z). The work dA of force f done by its action on the
considered “infinitely short” part is dA = f(x,v,2) - 7(z,y,2) ds. Hence the total
work of force f along the whole curve C is

A= f £z,4,2) - #(z,¥,2) ds:
(&)

Since the product f(z,y,z)-7(z,y, z) is a scalar, the integral is the integral of a scalar
function which is already k_nown.
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IV.4.2. The line integral of a vector function. Let C' be a Hi-mplu }I‘)iecewise-
smooth curvein Ey, (where k = 2 or k = 3) and let f be a vector function (with k com-
ponents) defined on C. We say that the vector function f is integrable on curve C if
the scalar function f-7 is integrable on C' (in the sense explained in paragraphs I\./.2.2
and IV.2.4). The integral [, f-7ds is called the line integral of o vector function £
on curve € and it is usually denoted by [ f-ds.

The line integral of a vector function is also often called the line integral of the
2nd kind.

IV.4.3. Remark. The fact that the unit tangent vector 7" need not exist in all points
of a simple piecewise-smooth curve €' does not matter. The points where 7 need not
be defined are the points where the smooth parts of C' are connected anc'l the number
of these points is at most finite. The line integral of a vector function is c.icﬁned by
means of the line integral of a scalar function and we already know that this integ.ra.l
does not depend on the behaviour of the integrand at points whose number is finite.

(See paragraph I1V.2.6, part c).)

IV.4.4. Remark. The line integral of a vector function can be denoted and written
down in various ways. It is very important to understand them and to recog‘n-izc
correctly what they mean. We will explain one of the other possible ways of writing
the line integral of a vector function in this paragraph.

Suppose that a vector function f has components U, V anji W. Thus, f =
(U, V,W) =U-i+V-j+ W k. Comparing the two integrals Jof-7ds and fcf-d.s
which mean the same, we obtain the formal equality ¥ ds = ds. The term ds is
considered as an “infinitely short” tangent vector to curve ' and its components are
often denoted by dz, dy and dz. Thus, we have

7ds = ds = (da,dy,dz) = idz +jdy+kdz
The scalar product f - ds can now be expressed
f-ds = (U,V,W): (de,dy,dz) = Ude +V dy + Wdz

and the line integral of the vector function f can be written as
/f—i’ds:[f-dszj(wa+de+Wdz). (Iv.8)
¢ c c

Tt is clear that'if C is a curve in B, and f is a two—dimensional vector function
with the components U and V then

- /f-m :ff-ds:/(Ud:v+de). (IV.9)
(5] c (o] .

IV.4.5. Example. Using the notation explained in the previous paragraph, you
can observe that the integral [,(22® +3y) dz is in fact the line integral of a vector
function (0, 0, 2z* + 3y):

/(2x2+3y)dz= f0~dm+0-dy+(2m2+3y)dz e L(0,0,212+3y)-d$.
c c 7
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IV.4.6. Remark. The line integral of vector function f is defined by means of
the line integral of the scalar function f:7 and so the main properties of the line
integral of a vector function are the same as the properties of the line integral of a
scalar function. Thus, we can simply rewrite items a), b) and ¢) of paragraph IV.2.6
with the function f-7 and we obtain valid assertions for the line integral of a vector
function. (Do it for yourself!)

The main and very important difference between the line integral of a scalar
function and the line integral of a vector function is that the line integral of a vector
function depends on the orientation of the curve. More precisely:

IV.4.7. Theorem. If a vector function f is integrable on curve C then it is also

integrable on curve —C' and
f f-ds:—/fvds.
-C o]

This theorem follows immediately from the definition of the line integral of a
vector function. The integral [, f-ds is equal to the integral Jof-7ds where 7 is
the unit tangent vector, It shows the direction given by the orientation of the curve.
If we change the orientation then the unit tangent vector changes its sign and this
leads to the change of sign of the integral.

IV.4.8. Evaluation of the line integral of a vector function. The line integral
of a vector function f on a simple smooth curve C can be evaluated by means of
a parametrization of C. Suppose that P is such a parametrization, defined in the
interval (a, b). Suppose further that curve C is oriented in accordance with paramet-
rization P. Then the unit tangent vector in every “interior” point of curve ¢ can be
expressed as 7 = P(t)/|P(t)|. Now using the definition of the line integral of the
vector function f and formula (IV.7), we obtain

il i Pods = ’ f@_ ;
fc Pt L # Pl / (P 5 1B d
jfvds = /bf(P(t))-P(t) dt. (1v.10)
c a

S'ubstituting here f= (U, V,W), P(t) = [qﬁ(t), W(t), 19(1‘-)] and P(t) — (qﬁ(t), T/;(f),
ﬂ(t}), we get:

/Cf. ds = f’ [T () + V 4(t) + W I(2)] dt (Iv.11)

where U = U(g(t), ¥(t), 9(t)), V = V(g(2), ¥(t), (£)) and W = W (4(2), (1),
#(t)). Formula (IV.11) can also be formally obtained from (IV.8) if we use the substi-
tution z = ¢(t), y =4(t), z=19(t) and do = §(t) dt, dy =(t)dt, dz =(¢) dt.

If curve C is not oriented in accordance with parametrization P (i.e. P generates

the opposite orientation of ') then formula (IV.11) holds with the sign “—” in front
of the integral on the right hand side.
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The line integral of a vector function on a simple piecewise-smooth curve C'
which is a union of the simple smooth curves C1, Cy, ..., Cyn (8ee paragraph IV.1.6
for details) can be evaluated in such a way that we first compute the integral on each
smooth part C;, Ca, ..., Cp of curve C' (e.g. by means of the parametrization of
these parts) and then we use the fact that the integral on C is equal to the sum of
the integrals on C4, C2, ..., Cm.

Finally, the line integral of a vector function can also be sometimes evaluated by
means of the Green theorem, the Stokes theorem or formula (VL.1). (You will find
the details in paragraphs IV.5.5., V.6.6 and VL.1.5.)

IV.4.9. Example. Find the work done by the forece f(z,y,2) = (y — 2®)i+
(z—y*)j+(z—2*)k overthecurve C: P(t)=[t, %, t°]; ¢€ (0,1} from [0,0,0]
to [1,1,1).

Curve C is defined by means of its parametrization P. Since [0,0,0] =i.p.C =
P(0) and [1,1,1] = t.p. C = P(1), C is oriented in accordance with parametrization
P. We can easily find that P(t) = (1, 2¢, 3t*). Using formula (IV.10), we obtain

; o 1 ey 4
f,f-ds:f(y—z‘*’,z—yz,z—zz).-ds=/ (0,#2 -4, ¢ =) - (1, 2¢, 3*) dt =
c c o
1
:/D [2t4f2t5+3t3—3t8j dt = [26° -2 4 340 30 = 22,

IV.4.10. Circulation of a vector field around a closed curve. Let C be a
closed curve in Ej or in E; and let f be a vector field (= a vector function) defined
on C. The line integral [, f-ds is called the circulation of f around curve C. In
order to stress the fact that C is & closed curve, the integral is also often denoted as

§of-ds.
IV.5. Green’s theorem.

This section deals with the line integral of a vector function on a closed curve
in Eg. The vector function is also supposed to be two—dimensional (i.e. to have two
components).

The next theorem says something that is very obvious at first sight. We do not
give the proof of the theorem. Nevertheless, if you were to see the proof, you would
be surprised that it is not easy. {

Bear in mind the convention that if nothing else is specified then “curve” de-
notes a simple piecewise-smooth curve and “closed curve” denotes a closed simple
piecewise—smooth curve. (See paragraph IV.1.6.)

1V.5.1. Jordan’s theorem. Let C be a closed curve in By. Then there exist two
disjoint domains Gy and G in Ey such that C is their common boundary and

a) Ey=GUCUG,,
b} one of the domains G, Gy is bounded and the second one is unbounded.

80

IV.5.2. Interior an’d_ exterior of a y 2 b

closed curve in E;. Let C be a clo- Yy %

sed curve in E; and G1, Gy be the do- C

mains whose existence is given by Jor-

dan’s theorem. That domain of Gy, G4 / Int C
N

which is bounded is called the interior of ¥
curve C' and it is'denoted by Int C'. The e
second domain, which is unbounded, is g

called the ezterior of C' and it is denoted Fig. 9

by EztC.

1V.5.3. Positive and negative orientation of a closed curve in E,;. Let C
bela closed curve in E,. We say that C is oriented positively if, when moving on '
in accordance with its griénté.iio;i, we have its interior on our left—hand side. (See
Fig.9.) In the opposite case, i.e. in the case when the interior of C is on our right—
hand side when moving along C' in accordance with its orientation, we say that C is
oriented negatively.

IV.5.4. Remark. Definition IV.5.3 is very simple and you can easily imagine what it
says, because you know where you have your left hand and your right hand. However,
you can also observe that this definition is not correct from a purely logical point of
view. Why not? — It is clear: Mathematical notions must be defined precisely and
must not depend on our knowledge of where we have .our left hand -and. our right
hand, In other words: How would you explain the above definition to an intelligent
being (for example an extra—terrestrial) who does not have two hands and is not used
to distinguishing between “left” and “right”? o

Since the logically correct definition of the pdsﬁitiyé‘(respe'ctix%ely'riegati've) orien-
tation of a closed curve in E; is not so easy and the above (not quite’¢orrect) definition
is satisfactory for our purposes, we do not show the correct definiition in this'text.

IV.5.5. Green’s theorem. Suppose that

DCEg 7" A
b) C is a positively oriented closed curve in D such that Int C C D.

i ke @ fleg - ; av  ou :
Th f.ds = - .
en }i s f/m C(ax By) dedy. . (1v.11)

IV.5.6. Remark. LT'sin:g the for‘ma,.l‘equaiity f-ds=Udz +Vdy asin (IV.8), we
can write formula (IV.11) in the form

' v au
Ude +Vdy = L
j{c b Wil M } G( 5 ) dady. (Iv.12)

If all the assumptions of Green's theorem are satisfied with the exception that
curve ¢ is oriented negatively then formulas (IV.11) and (IV.12) hold with the sign
“~" in front of the integrals on the right hand sides.

a) a vector function f = (U, V') has continuous partial derivatives in domain
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IV.5.7. Example. Evaluate the circulation of the vector field f = (—a?y, zy?)
around the positively oriented circle z? 4 y? = a® (where a > 0).

If we denote the components of f by U and V then we get:

aV BU a d 2.8 .2 2

It can easily be verified that all the assumptions of Green’s theorem are satisfied and
so we obtain:

2m o
jlg —ztyde +zytdy = f/ (& +y*) dady =) (./ r dr) do = =,
c 22 4yI<a? 0 0 2

1) We have transformed the double integral to the polar coordinates.

1V.5.8. Remark. If the components U and V of vector function f are such that
8V /0xz— 08U /8y =1 then Green’ : thwrem can be used to evaluate the area of Int C.
For example, if we choose U = —1y, V = 12 and C is a closed curve in By then

K
;j( —ydztody = 1 f[ a”“ (J))d dy—-f/ dody = (IR T,
Int C y IntC

IV.6. Exercises.

1. Decide about the existence of the integral [, ds/(z* +y*) where C is the circle
with its center at point S and radius 1.

a) §=10,0] b) S =[1,0] S = [0,-2]

2. Evaluate the length of curve ' which is defined by its parametrization.

a) P(t) = [3t, 3%, 2¢%], t € (0,1}

b) P(t)=[acost,asint, bt], t€(0,2r) (a>0, b>0)

3. Evaluate the following integrals. (Which of them are are the line integrals of a

scalar function and which of them are the line integrals of a veetor function?)

d ; ;
a f 2 : C is the part of the straight line y = o —2 between the points
7

TV [0,-2] and [4,0]

b) [ y ds; C is the part of the parabola y* = 2pz between the points [0, 0] and
2 2p,2p] (» > 0)

c) / zy ds; Cis the pa.rt of the ellipse z?/a®+y?/b* =1 in the second quadrant

d) / v/2y ds; C is the part of the eycloid z=a(t —sint), y = a(l — cos £)
corresponding to ¢ € (0,27)

€) f (¢ —y) ds; C is the circle 2% +y? =2g
s

2 ;
f /j—imw?ds; C: z=acost, y=asint, z=at, t € (0,27) (a > 0)
cT Ty '

82

f zyz ds;
c

C is the intersection of the surfaces a? 4 y2 + 2% = R? ‘and
22 +y? = R/4 in the first octant (R>0)

/ (z +y)ds; Cis the quarter of the circle 2% +¢% 4 22 = R%, y =1z in the
c

first octant

/ z dy; C is the triangle with its sides on the coordinate z— and y-axes and
e on the line 2/2+y/3 =1, oriented positively

] (z +y)dx; C is the line segment from [a, 0] to [0, §]
(o4

/C(w” ~y

) dz; C is the part of the parabola y==z? from [0,0] to [2,4]

/ [~ cos ydz + y sin zdy]; C is the line segment from [0, 0] to [, 2]
e

mey

f y?de — % dy
o Tty

ds; C is the ellipse x?/a® +¢?/b? = 1, oriented positively

; C is the part of the circle 2% +y* =a” (@ > 0) in the first
and in the second quadrant, oriented from [a,0] to [—e, 0]

/(2afy,fa.+y)-ds; C; z=a(t—sint), y=a(l —cost), t€(0,27); C
c

is oriented from [27a,0] to [0, 0]

[ [y% dz + 2% dy+ 2% dz]; C is the intersection of the sphere «? 432 + 22 = R?
c

with the cylindrical surface z? +y? = Rz

(R>0), 2>0; C isoriented positively as viewed from the origin O =[0,0,0]

/ [2zyi—2%j] ds; C is the union of the line segments leading from [0,0] to
fe;

(2,0] and from [2,0] to [2,1]

/{yzi+z R?—y?j+oyk]-ds; C: z=Rcost, y=Rsint, 2 =at/(27)
c

(¢ > 0), C is oriented from its intersection

with the plane z =0 to its intersection with the plane 2z =a

/(1 — ¥y dz+z(1+y*)dy; C is the boundary of the square (0,2) x (0,2)

oriented positively -

/(e“”' + 2z cos y) dz + (e — 2? sin y) dy; C is the circle 22 +1y? =8
¢

oriented positively

f{my+x+y)dm+(zy+z—y}dy, C is the ellipse 922 4 36z + 44> =0

oriented negatively

/(m +y)dz -2z dy; C is the bounda.ry of the triangle with its sides on the
e

JICTE

lines = =0,y =0, 2+ y =35, oriented negatively

dy/z); C is the boundary of the triangle with the vertices [1,1],
[2,1], [2,2], oriented positively
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