x) f [2(z® +y*) i+ (z +)?3jlds; C is the boundary of the h:'*i\a.ng!e with the
c vertices [1,1], [2,2]; [1, 3], oriented positively
i LRy
4. Evaluate the work done by force f over curve C.
a) f=(z—y,z), Cisthe boundary of the square,with the vertices [—2, —2], [1,—2],
[1,1], [-2,1], oriented clockwise 0 8

b) f=(z+y,2z), Cis the circle z =a cos t,‘y:asin t,t e {0,2r)

¢) f=(y,2), Cis the closed curve which consists of the semi-axes and the quarter
of the ellipse # =2 cost, y =sint,t € {0,27) in the first quadrant

5. C, is the line segment from [0,0] to [1,1], Cy is the part of the parabola y = a?
from (0,0] to [1,1], 1 = [, (+y)* do—(z—y)? dy, I = [ (z+y)? dz—(z—y)? dy.
Applying the Green theorem, evaluate the difference oL —1I.

6. Using the line integral, evaluate the area of the interior of the closed curve which
consists of the arc of the cycloid z =-a(t —sint), y = a(l —cost), t € {0,27) and
the line segment connecting the points [0,0] and [2rg, 0].

7. Using the line integral, derive the formula for the area of the interior of the ellipse
wtfa? 4y B =1

8. Using the line integral, evaluate the area of the interior of the closed curve whose
equation in the polar coordinates is r = a(1'—'cos ¢) where a > 0 (a so called
“cardioid™). 5

9. Using the line integral, evaluate the area of the interior of a so called asteroid,
whose equation is @2/% 4 /% = a®/* (¢ > 0). (You can use its parametric equations
r=acos*t,y=asin’¢ t € (0,27).)

10. Evaluate the circulation of vector field f around the closed curve C. K it is

possible, apply the Green theorem.

a) f(z,y) = (e* siny — y?, e® cos y — 1), C=C1UCy C={[zy] €Eq z? +
v 4+2r =0, y< 0}, Cy={[g,y] €Ey; ~1 22 <0, y= 0}, C is oriented
positively. .

b) flz,y) = (z+y)i+(y—2)i, C= {[z,y] € Eq; 2*/d? +y?? =1}, Cis
oriented negatively.

Ii

¢) f(z,y) = (z2,y?), C is the perimeter of a triangle with the vertices A = [1,1],
B =[2,1], D = [2,3], oriented positively.

d) f(z,y) = (2, ~z), Cis the perimetle.r of a triangle with the vertices A = [1,1],
B =[1,3], D =[2,2], oriented negatively.
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V. Surface Integrals

V.1. Simple surf'ac'es.

We will work with two types of surfaces in Ej: so called simple smooth surfaces
and so called simple piecewise—smooth surfaces.

The idea of the definition of a simple smooth surface is the following. Imagine
that you have a subset B of E;, bounded by a clesed curve I'. You cut set B from
E;, you move it somewhere to E3 and you deform it elastically so that you do not
disturb its smoothness. This means that you can stretch it in various directions, but
your cannot break it:and you cannot paste two different points together. Thus, you
get a simple smooth surface in Es.

This can be easily expressed mathematically. The described procedure moves
every point [u,v] € B to some other point P(u,v) = (¢{u,v), ¥(u,v), #(u,v)) in Es.
Thus, P is a mapping of B to E3. The requirement that the deformation of B is
elastic and smooth leads to the condition that P (i.e. the functions ¢, 4 and ¥) is
continuous and has continuous partial derivatives in a sufficiently large subset of B.
The requirement that two different points belonging originally to B cannot be pasted
together leads to the condition that mapping P is one-to-one in B. ‘

The functions

z = ¢(u, 1’): y=9Pluv), z= 19(”:“)
are called the coordinate functions of mapping P.

We shall denote the partial derivatives of mapping P with respect to the variables
%, v by P, and P, and we shall work with them as with vectors. Hence

i i
il

Pu(uv) = (6¢(u,v) Fp(u,v) aﬁ{u,v)) sk, By = 9 8 @),

du 7 G T du ~ \Bu’ du’ Bu
_ (08w, v) OP(u,v) 89(u,v) _" 84 9% 89
Py(u,v) = ( P ) or shortly P, = (55, o %)

The vector product_pf vectors P, and P, will be denoted by ‘P., % P,. Have in
mind that : o Y

¥ 3 CEREe

Poxho= o o B (BR00 205 3 0400
L A gz g:; g:; T \Qu By Budv Budv Oudv
W B O %%ﬁé’i’ﬁ‘é)
' ou ov  Ou fv/

We describe the notion of a simple smooth surface once again, this time precisely,
in the following definition. e
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V.1.1. Simple smooth surface. Let  C Ey, P = (#,%,9) be a mapping of
to B, I' be a closed simple piecewise-smooth curve in ©, and let B = I' U IntT.

Suppose that

a) mapping P is continuous and one-to-one in B, :

b) P has continuous and bounded partial derivatives Py and P, in B — K where
K = 0 or K is a finite set of points on the boundary T' of set B,

¢) P,xP,#0 in B—K.

Then the set o = {X = P(u,v) € Eg; [u,v] € B} is called the simple sooth surface

in B;. Mapping P is called the parametrization of surface o. Theset C ={X =

P(u,v) € Eg; [u,v] €T} is called the boundary of surface o.

The boundary of a simple smooth surface is a closed simple piecewise-smocth
curve in Bs. Instead of the word boundary, you may also find the denotation “con-
tour” or “margin” in literafure. -

Every simple smooth surface has infinitely many parametrizations. (Compare
with the analogous statement about the simple smooth curve in paragraph IV.1.1.)

Our definition of a simple smooth surface is relatively straightforward. However,
this is paid for by the fact that, for instance, a “nice” surface like a sphere is not
a simple smooth surface. All attempts to modify the definition of a simple smooth
surface so that it will alse include the sphere always lead to such great complications
that they do not pay off. This is a consequence of the geometrical structure of the
three-dimensional space By — it provides such a variety of possible forms of surfa-
ces that we must be very careful in order to avoid confusion in our definitions and
theorems. However, you will see that we do not exclude spheres (and other similar
surfaces) from the class of surfaces that we will deal with — they can be treated as
so called simple piecewise-smooth surfaces, whose definition is given in paragraphs
V.1.5 and V.1.6.

'V.1.2. Orientation of a simple smooth surface. Normal vector. Let P be
a parametrization of a simple smooth surface o, defined in set B C Ej, and let
X = P(u,v) for [u,v] € B — K (see definition V.1.1). Then the vectors Py(u,v) and
P,(u,v) are tangent to o at point X and due to condition c) from definition V.1.1,
they are linearly independent. Their vector product is perpendicular to both of them,
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and so it is als? perpendicular to surface o. If we divide the vector product by its
length, we obtain a unit vector, perpendicular to ¢ at point X. )
Wte can c:ho?se the orientation of surface o in such a way that we put the
normal vector n (i.e. the vector which is perpendicular to o, its length i i
. . : th
direction shows the orientation of ¢) , g s one and s
; Py(u,v) x Py(u,v)
either n= — o
“ [Pul,0) x Py Mol € B-K V1)
Pu(u,v) x Py(u,v)
[Pulu, 0) % Polu,)

It n is g.iven by formula (V.1) then we say that the simple smooth surface o is
oriented in accordance with its parametrization P.

or n=-—

for all [u,v]€ B~ K. (V.2)

. Thuf;, the simple smooth surface & is oriented by the choice of a normal vector n
(i.e. a unit vector perpendicular to o) at any point where the perpendicular direction
to o is defined. The normal vector is oriented to the same side of ¢ at every point
where it exists. This means that it changes continuously if you move on o.

V.1.3. The relation between the
orientation of a simple smooth
surface and its boundary. We say
that boundary C' of a simple smooth
surface ¢ is oriented in accordance
with o if your left hand shows the di-
rection of the normal vector n on o
when you move on C in the sense of
its orientation. (See Fig.11.)

Fig. 11

1t is obvious that this definition is not logically quite correct (for the same reasons

mt 11 n . ). NBVeIt}leleSS it is mstructive, sir e and 1t canno’
as € case O lleﬁ t10; I V 3 I &
3 ) 1 C

Fig. 12

V.1.4. Exa;npge. Surface o is a part of the cone z = 1/2% + 2, corresponding to
@ 2 0and z°+y* < 4.1t is oriented “upwards”, i.e. the third component of the normal
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tor is positive. Show that o is a simple smooth surface, find its parm.neb%'izatlonci
\éec_gr whpether o is or is not oriented in accordance with your pa.rmnetnza.tlon, a'I:h
degnee the orientation of the boundary of ¢ so that it is oriented in accordance wi
e

the orientation of .
i = /2] z.
In order to parametrize o, we can use the equation z = z% 4+ y%: We can put

P z=¢(wv)=u, y=p(uv)=v, z=30uv)= Vu? 4 v?
for [u,v] € B where set B is defined by means of the conditions u > 0 and u?+v? < 4:
or [u,
B = {[u,v] € By u 20, u® +v* <4}.

It be verified that mapping P has all the properties.which are requ.ired' in dfeﬁn

nit?gg V.1.1, and so o is a simple smooth surface and P is the parametrization of o.
1.1,

The partial derivatives P, and P, are

P = (1,0, ﬁ“ﬂlﬁ) Pu(w,v) = (0, 1, m\/z%ﬁ)

their vector product is

U v
_(_ - i
PuXPU_( 'u.2+U2‘ u? 4 v?2 )

and the length of this vector product is V2. Tl.ms-, the unit vefgorth%dxcf; / |f§e>:ltP;1‘
erpendicular to ¢ equals Py x P,,/ﬁ a.nld it 18 seen that e1 1t x ;:)nd s
It)his vector is positive. Hence it coincides with thel given norma. \ge.c og_cn P
can say that surface o is oriented in accordance with our parametrizati . )
The orientation of the boundary C of & w‘hich corresponds to gle :rtﬁnta (;ic::;
of ¢ is marked in Fig.12. For example, the unit tangent vector to C at the p

X =[2,0,2)is ¥ = (0,1,0).

i i ise— face consisting of two simple
.1.5. A simple piecewise—smooth sur : ;
:mooth surfaI::es. Suppose that oy and o2 are two oriented simple sm.ooth surfg,ces
whose boundaries ¢ and C, are either both oriented in accordance with oy and o2
or they are both oriented opposite to o1 and o3. Suppose that

Fig. 13

a) o1 Noz =CyNC, and this set forms a simple piecewise-smooth curve or more
: e
(a finite number of) such curves,
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7 b) the orientation of ¢, and C, is opposite in all points of Cy N Cy. (See Fig. 13.)

Then the union o = o4 U, is called a simple piecewise-smooth surface in By, consis-
ting of two simple smooth surfaces o; and a3.

" The orientation of o is given by the érienfation of o1 and oy.

The boundary of o is the closure of the set (C1UC,)—(C1NCY). (See Fig. 1300t
is either empty, or it is one simple piecewise-smooth curve (see Fig. 13), or it consists
of more (a finite number of) simple piecewise—smooth curves.

V.1.6. A simple piecewise—smooth surface consisting of more simple

smooth surfaces. Let o; and a2 be the simple smooth surfaces from the previous
paragraph. If we successively, respecting the same rules, connect other simple smooth
surfaces 03, 0y, ..., o, to the union o U g3, we obtain a simple piecewise-smooth
surface in By which consists of m simple smooth surfaces a4, o5, . .. » O (See Fig. 14.)

The surface which differs from a simple piecewise-smooth surface o only by its
orientation will be denoted by —a. '

V.1.7. A closed simple piecewise— smooth surface., A simple piecewise ~smooth
surface & whose boundary is the empty set is called closed.

V.1.8. Example. A surface which consists of two simple smooth surfaces oyt
22+ (y+1)72 =2 ¥y 20 and oy : -ﬂ:r‘?—l—(y—l)2 =2y £0 is a closed simple
piecewise-smooth surface,

Other exampiles of closed simple piecewise-smooth surfaces are: :t_hé surface of
a cube, a sphere, an ellipsoid, ete. o

Similarly as in the case of curves, we can make an agreement that whenever
we will use the word “surface”, we will mean a simple piecewise-smooth surface. A
“closed surface” will mean a closed simple piecewise—smooth surface. More details
about the surfaces will be specified if they are important and necessary,
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V.2. The surface integral of a scalar function.

V.2.1. Physical motivation. Suppose that a desk has the form of.u. simp]t? smbot_h
surface o in Es and its surface density (i.e. amount of mass per unit area) is p. p 18
generally a function of three variables z, y, z. We wish to evaluate the total mass M
of the desk. )

Suppose that P is a parametrization of o which i.s de'ﬁned in se,”s B C E,.
Imagine that B can be decomposed to infinitely many “infinitely small” squares of
the form (u,u+ du) x {v,v+ dv). P maps each of these squz?:r.'es t? the part :;f o
Since the square {u,u + du) x (v,v +dv) is supposed to be “infinitely small”, its
i on ¢ can be taken for an
tﬁ.niaieP(u,v), Ay = P(u +du,v) = P(q,v) + Py(u,v) du, Az = P(u+du,v+ dv)d=
P(u, )+ Pu(u,v) - du+ Py(u,v) - dv and Ag = P(u,v + dv) = P(g, v) 4+ Py(u,v) - vd:
(See Fig. 15.) Its area is dp = | Az — Ayl |As — Ay] - sin a and this can be expressed
as dp = |(Az — A1) x (As — A1)|. Substituting here for points 41, Az, 4a, we obtain:
dp = | Pu(u,v) % Py(u,v)| dudv. The mass of the parallelogram A; Az A3 Ay is dM =k
o(A)-dp = p(P(u,v) |Pulu,v) x P,(u,v)| dudv and the total mass of the whole des
(surface) o is

M= [fa p(P(u,v)) - |Pulte, v) x Py(u,v)| du dv.

AV 4..‘»«& _____ i
s, S A TN
T - : 3
widv i 8 Ay |
# ; Ay A _/
R . - —
I T 7
' Fig. 15 | ©

V.2.2. The surface integral of a scalar function on a simple s-mooth sur'face.
Let ¢ be a simple smooth surface in E3 and P be its pa.ramet-riz‘atlon defined in set
B C E;. Let f be a scalar function defined on ¢. We say that f is mteg?ﬂa.ble on surface
o if the double integral [[ f(P(u,v))- | P (t, 0) % Pu(y,u)l dudv exists. We d"anote
this integral by [ f dp and we call it the surfece sntegral of a scalar function f
on the simple smooth surface o.

V.2.3. Remark. The integrability of function f on a simple sn:mot‘h surface o and
the surface integral | f , [ dp are defined by means of a paxjametnzatlon of surface a.
However, analogously to the line integral of a scalar function (see renr'lark Iv.2.3), it
can be proved that neither the existence nor the va.h-le o‘_f the surface integral

[f, f dp depends on the concrete choice of parametrization of surface o.

a0

“infinitely small” parallelogram with the vertices

V.2.4. The surface integral of a scalar function on a simple piecewise—
smooth surface. Let o be a simple piecewise—smooth surface in E; which is a
union of simple smooth surfaces oy, 03, ..., om (see paragraphs V.1.5 and V.1.6).
Let f be a scalar function defined on ¢. If function f is integrable on each of surfaces
&1, 03,y .., Om then we say that it is integrable on surface ¢ and we put

/jyfdp:ijfmfdp. (V.3)

The integral on the left hand side is called the surface integral of the scalar function
f on the simple piecewise-smooth surface o.

The surface integral of a scalar function is also often called the surface integral of
the 1st kind.

Instead of [f, f dp, we can also write for example [J| f(z,y,z) dp.

V.2.5. The area of a surface. If ¢ is a simple piecewise-smooth surface, then the
value of the integral [f dp is called the grea of surface o.

Specifically, if o is a simple smooth surface and P is its parametrization defined
in set B C E; then the area of surface ¢ is

Bl e f/ dp = ffam(u,u)‘xP,,(u,v);dudv. (V)

V.2.6. Some important properties of the surface integral of a scalar func-
tion. Since the surface integral of a scalar function is defined by means of the
double integral, its basic properties are the same as the corresponding properties of
the double integral. Let us mention only some of them:

a) (Existence of the surface integral.) If function f is continuous on surface
o then it is integrable on'c (i.e. the integral [[ fdp exists).

b) (Linearity of the surface integral.) If functions f and g are integrable on
surface o and o € R then

[ roa= ]]ﬂfdp+f]ﬂg_dp:
//aa-fdp=a~/lfdp-

¢) Iffunction f is integrable on surface ¢ and function ¢ differs from f at most in
a finite number of points or curves then g is also integrable on ¢ and

[ ffrs

d) If function f is integrable on surface ¢ then it is also integrable on surface —o

and )
Lro=fro
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Assertion a) can be generalized in this way: If o is a simple piecewise-smooth
surface and f Is continuous on each of its smooth parts then f is integrable on o.

Assertion d) says that neither the existence nor the value of the surface
integral of & scalar function depends on the orientation of the surface.

v.2.7. Evaluation of the surface integral of a scalar function. The surface
integral of function f on a simple smooth surface o can be evaluated by means of a
parametrization of o. Thus, if P is such a parametrization, defined in set B C o,
and function f is integrable on o then we can use the formula

ﬂ;fdp = f[B F(P(u,v)) - lPu(u,Q) x Py(u,v)| du dv. (V.5)

This formula follows immediately from the definition of the surface integral on a
simple smooth surface — see paragraph V.2.2.

If o is a simple piecewise-smooth surface which is a union of simple smooth
surfaces o1, 02, -+ ., Om (see paragraphs V.1.5 and V.1.6) then the surface integral of
function f on surface o can be computed by means of formula (V.3).

V.2.8. Example. Integrate the function fla,y,2) = ¢+ 2y over the the surface
c:24+y+z=1,2z20,y20,2=0

Surface ¢ can be parametrized by the mapping
Pluyw): z=wu, y=v, z=l-u—v; [u,v] € B

where B = {[u,v] €Ey; 0<€u <1, 05 v s 1—u}. We can find that P, =
(1,0, -1), P, =(0,1,-1), PuxPy=(1,1,1) and |Py % P,| = /3. Using formula
(V.5), we get

//E(sz) e ffB(quzu)ﬁdudu = ﬁfolfﬂl_u(wzv) ddu=
» \/5]01(171;)@ = Vi/2.

V.2.9. Example. Integrate the function g¢(z,y,2) = zyz over the surface of the
cube cus from the first octant by the planes s =1,y =1 and z = L.

The cube can also be expressed as the Cartesian product (0,1) x{0,1) x(0,1).
Tts surface has six sides. Since zyz =0 on the three sides that lie in the coordinate
planes, the integral over the surface of the cube is equal to

f wyzdp—}-/ zyzdp+] zyz dp
a1 o3 " oy

where oy is the square region z = 1,0 <y < 1,0 < z £ 1, gy is the square region
y:1,Ogo:S1,[}Sz51a.nda3isthesquareregionz=1,051:§1,0.:_§y§1.
oy can be naturally parametrized by the mapping

Plu,v): =1, y=u, z=0; [u,0] € B = (0,1) x {0,1).
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1t is obvious that P, = (0,1,0), P, =(0,0,1), Pyx.P, =(1,0,0) and |P, x P,
; t 14Uy Dy Uy L)y Ly v =4, U, u v =L
Using formula (V.5), we obtain ( ' ] l

1 p1
ff a:yzdp-—-//uvdudv:;—.
oy 0 0

Due to the symmetry, the integrals over o3 and o3 are also ;. Hence, the integral
over the surface of the cube is equal to %.

V.2.10. Example. Although the sphere op: 22+ ¢% +2* = R* is not a simple
smfmth surface, there exists a mapping P of a closed set B C E; onto the sphere
which has all the properties of a parametrization (see paragraph V.1.1) with one
exception: it is not one-to-one on the whole set B. (It is one~to—one in the interior
of B, but not on the boundary. of B.) Mapping P is defined by the equations

- &= d(u,v) = R cos u cos v,
y =(u,v) = R sin u cos v,
z=19(u,v) =Rsinv

for w € (0,27}, v € { —7/2,7/2). (You can observe that the background of P is the
e}.cpression of the coordinates of the points of sphere oz in the spherical coordinates.)
Since P fail to satisfy all the requirements on the parametrization only on the se:t
of two-dimensional measure zero (the boundary of B) and it is already known that
the behaviour of integrands on sets of two-dimensional measure zero does not affect
double or surface integrals, P can be used in the evaluation of the surface integral
on sphere op in the same way as if it were a parametrization. (In fact, mappin-
gs whose properties differ from the required properties of pa.ra.metrizatior;s only on
sets of two—dimensional measure zero are also often, not quite corre-ct]y called the
parametrizations.) !

Thus, if for example f(z,y,2) = o + y* then, using formuls (V.5), we obtain’

// flz,y,2) dp = //B R* cos? v |Py(u,v) % P,(u,v)| dudv,
TR
Vectors Py, Py, Py, x P, and the number |P, x P,| are:
Py(u,v) = (~R sin u cos v, R cos u cos v, 0),
Py(u,v) = (~R cos u sinv, —R sin v sin v, R cos ),
Py(u,v) % Py(u,v) = (R cos u cos?v, R? sin u cos® v, R? sin v cos v),
NPu(u,v) % By(u,v)] = R? cos v.

Substituting this to the above integral and applying Fubini’s theorem II1.3.2, we get

2 ) C £ 2w /2

g cos” v | Py(u,v) x Py(u,v)| du Fl’v = /(; (f R* cossvd'u) du = &7 R

—-7/2

V.2.11: Rerlnark. Th.c approach explained in example V.2.10 can also be used in
connection with other simple piecewise-smooth surfaces, such as ellipsoids and conic
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surfaces. If for instance o is the conic surface z%+y? = 2? corresponding to z € (0, 4)
then the mapping
P: z=¢(u,w)=ucosv, y=19(u,v)=usinv, z= Hu,v) =u

(defined for v € (0,2), v € (0,27)) has similar properties as mapping P from
example V.2.10: It satisfies all the conditions of the parametrization (see. pm‘agraph
V.1.1) with the exception that it is one-to—one only in the interior O.f its domain,
ie. in (0,27) % (0,2) and not in (0,27} x {0,2). Nevertheless, mapping P can be
used in the evaluation of the surface integral on ¢ in the same way as if it were a
parametrization of ¢.

V.3. Some physical applications of the surface integral of a scalar function.

Suppose that a desk has the form of surface ¢ in Ej. Thg desk need not be
homogeneous, and so its surface density (amount of mass per unit of a.rea') need not
be constant. Let the density be given by function p(z,y,2). The surface integral of
a scalar function can be used to define and evaluate some mechanical characteristics
of surface 0. Suppose that p is expressed in [kg - m™2]. Then we have:

Mass M = f[ p(z,y,2) dp  [kel,

Static moment about the zy—-plane Mgy = f/ z-p(z,y,z)dp  [kg- m],

Static moment about the zz—plane M,, = ff yple,y,2) dp  [kg - m],
o

Static moment about the yz-plane M. = ff z-p(z,y,2) dp [kg -m],
-2 e
Mg, M.

My, sy 2Ty

[m],

Center of mass [Zm,Ym,Zm] ZTm = Zm =

TN M
Moment of inertia about the z—axis Jp, = f/a(y2 +22) - plz,y,2)dp  [kg-m?,
Moment of inertia about the y—axis Jy = /.[r(a:2 +22) - p(z,y,2)dp kg m?,
Moment of inertia about the z—axis J; = /:/;(z” +47%). p(i‘, y,2)dp [kg-m?],
Moment of inertia about the origin Jo = f‘/;(:cz 42+ 2% p(z,y,2)dp [kg - m?].
Derive the formula for the moment of inertia about a general straight line in E3

whose parametric equations are ¢ = g + tat, ¥ = Yo +ugt, z =z +uzt; t € R
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V.4. The surface integral of a vector function.

V.4.1. Physical motivation. Suppose that ¢ is a surface in the flow of an in-
compressible fluid and we wish to express the flux of the fluid through surface o per
unit time. By “flux”, we understand the volume of the fluid that flows through the
surface. Suppose that the fluid moves with a steady velocity v(z,y,z), and n{z,y, z)
is the normal vector to ¢ at the point [z,y,2]. The flux of the fluid through an
“Infinitely small” part of surface ¢ which finds itself at [z,y, 2] and its area is dp
is v(z,y,2) - n{z,y,z) ds. Thus, the total flux through the whole surface ¢ is
f,[a. V(Iﬂ, Y, z) ) ﬂ(..".‘, Y, Z) d‘g'

The same approach can also be used if we wish to evaluate e.g. the flux of a
magnetic field through a given surface.

Let us recall that the idea of an “infinitely small” part of ¢ is not logically
quite precise (see also Section IL.7 for further details). However, if we apply the idea
carefully, it can be useful especially in situations when we need to derive formulas
expressing various geometrical and physical quantities.

V.4.2. The surface integral of a vector function. Let o be a simple piccewise-
smooth surface in E3 and let f be a vector function (with three components) defined
on o. We say that the vector function f is integrable on surface o if the scalar function
f-n is integrable on o (in the sense explained in paragraphs V.2.2 and V.2.4). The
integral ‘ffu f-ndp is called the surfuce integral of a vector function f on surface
o, and it is usually denoted by [[ f-dp.

The surface integral of a vector function is also often called the surface integral of
the 2nd kind. It defines the fluz of vector field f through surface o.

V.4.3. Remark. The fact that the normal vector n need not exist in all points
of a simple piecewise—smooth surface ¢ does not matter. n need not be defined at
points where the smooth parts of ¢ are connected and they form at most a finite
number of lines. The surface integral of a vector function is defined by means of the
surface integral of a scalar function and we already know that this integral does not
depend on the behaviour of the integrand in a finite number of points or curves. (See
paragraph V.2.6, part c).)

V.4.4. Remark. It is very important to understand various ways in which the

surface integral of a vector function can be written down, and to recognize correctly
what they mean.

If the vector function f has components U, V and W then the integrals

/faf.dp, f‘/gflndp, /L(U,V,W)-dp,

//U(U,V,W)-ndp, /L(UingHWk)-dp, /L(Ui+Vj+Wk)-ndp

have the same meaning.
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Another denotation of the surface integral of a vector function also sometimes
appears in literature. It is based on the idea of expressing vector dp in the form

dp = (dydz, dedz, dydy) = 1dydz+j dudz +k dudy.

Substituting this to the integral [f (U,V,W)-dp &nd computing the scalar product,
we obtain ;

//f-dp = f/('U,v,W)-dp = f[Udydz+dedz+dedy.

Nevertheless, we think that this last notation of the surface integral of a vector
function can lead to confusion, so we will not use it.

V.4.5. Remark. The surface integral of vector function f is defined by means of the
surface integral of the scalar function f-n and so the main properties of the surface
integral of a vector function are the same as the properties of the surface integral of
a scalar function. Thus, we can rewrite items a), b) and ¢) of paragraph V.2.6 with
the function f-n instead of f and we obtain valid statements for the surface integral
of a vector function. (Do it for yourself!)

The main difference between the surface integral of a scalar function and the
surface integral of a vector function is that the surface integral of a vector function
depends on_the orientation of the surface. This is the content of the following theo-

IeImn:

V.4.6. Theorem. If a vector function f is integrable on surface o then it is also
integrable on surface —o and

[Luss=ffron

This theorem is an immediate consequence of the definition of the surface integral
of a vector function. The integral f[ f-dp equals JI f:ndp where nis the normal
vector to o. n defines the orientation of surface o. If we change the crientation then
vector n changes its sign and hence also the surface integral [[ f-ndp changes its
sign.

V.4.7. Evaluation of the surface integral of a vector function. The surface
integral of a vector function f on a simple smooth surface ¢ can be evaluated by
means of a parametrization of o. Let P be such a parametrization, defined in set
B C E;. Let ¢ be oriented in accordance with parametrization P. Then the normal
vector n to o can be expressed in all “interior points” of o as n = Py, X Py /| Py X Py|.
(See paragraph V.1.2, formula (V.1).) Using the formula [ f-dp = [[ f-ndp
and formula (V.5), we obtain

flf-dp:f[gf.ndp:

_ _ Py (u,v) x Py(u,v) u‘v w.o)| du do
= f/Bf(P(u!UD \Pu(u,t:)xPﬂ(u,v)i |PU-( 1 )XP,,( 3 )id d,
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M’f.dp - //ﬂf(p(u,u))-(pu(u,v}xpu(u,v)) du dv. (V.6)

If surface a is not oriented in accordance with parametrization P (i.e. P generates
the opposite orientation of o) then formula (V.6) holds with the sign “—” in front of
the integral on the right hand side.

The surface integral of a vector function on a simple piecewise—smooth surface
a which is a union of simple smooth surfaces oy, o4, ..., o (see paragraph V.1.6 for
deta;’a_lrs_}: can be computed in such a way that we first evaluate the integral on each
smooth part o1, 63, ..., on of surface ¢ (e.g. by méans of the parametrization of
these parts) and then we use the formula - e

/fuf-dp = Zm:f./ﬂf-dp.

i=1

Some simple piecewise-smooth surfaces, e.g. spheres, ellipsoids aiid parts of co-
nes, can be described by means of a mapping whose properties differ from the required
properties of parametrizations (see paragraph V.1.1) only on a set of two-dimensional
measure zero. Examples of such mappings are given in paragraphs V.2.10 and V.2.11.
These mappings (let us recall that they are also often, not quite correctly, called the
parametrizations) can be used in formula (V.6) in the same way as parametrizations.

The other possible way of evaluating the surface integral of a vector function is to
apply the Gauss~Ostrogradsky or Stokes theorem. These theorems will be explained
in Section V.6. :

V.4.8. Example. Find the flux of the vector field f(z,y, z) =yzj+ 2 k through
the surface o cut from the semicircular cylinder V¥ +z22=4, 220 by the planes
z=—1 and z =1. Surface ¢ is oriented by its outward normal vector.

We can parametrize surface o by the mapping
P(u,v) Pom=u, y=2c0sv, z=2sinv; [uv]€B=(-1,1)x(0,x).

{0, —2 cos v,.—2 sip v). The unit vector perpendicular to g for example at the point
[0, 0, 1] (which corresponds to u = 0 and v = 7/2), expressed by méans of pararmet-
rizatic_)n Pis ' e 2T

We can find that Py = (1,0,0), P, = (0, -2 sin v, 2 cos v) and P, x P, =

Bow P,
[Py % Py| lu,e)=(0, x/2]
Since surface o is oriented outward, the above vector is equal to —n (where n is the
normal vector to o at the point [0, 0, 1]). Hence, parametrization P generates the

opposite orientation of surface o. This means that if we use formula (V.6), we must
write the “~" sign in front of the integral of the right hand side:

f[’(925+z2k)-dp = —/L{ésinvcmvj+4sin2v k] (P.xP,) dudv =

= (0, 0,~1).
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1 ™
= 7./‘ ] (U, 4 sin v cos v, 4 sin? v) - (0, —2 cos v, —2 sin u) dvdu =
-1Jo

1 ™
—/ j’ [—8 sin v cosiv—8sin3'v] dv du = 32.
-1Jo

V.5. Operators div and curl.

V.5.1. Divergence of a vector field. Let f = (U, V.W) be a differentiable vector
field in domain D C E;. The divergence of f is a scalar field in D which is denoted
by divf and it is defined by the equation
i au ov oW
div f = ey + E + B
V.5.2. Curling of a vector fleld. Let f = (U, V.W) be a differentiable vector field
in domain D C Es. The curling of f is & vector fleld in D which is denoted by curl f
and it is defined by the equation
4. & k
T a a a h(aW v au  ow av BU)
Rl |8 By 92| \@y 9z 8z Oz’ Bz By
u v, W

Instead of the curling of a vector field, denoted by curl f; we often speak about
the rotation of a vector field, and we denote it by rot f.

V.5.3. The operator nabla. We denote by V and refer to as the operator nabla
the vector whose components are operators of partial differentiation with respect to
z, y and z. Thus

g a9 9

V=(z 5 2)

bz’ Oy’ Oz

(We use the word “operator” because it prescribes performance of some operations
- in our case Performa,nce of partial derivatives with respect to z, y and z.)

The operator nabla is often used in the denotation of various scalar or vector
fields. You already know that the gradient of a scalar field ¢ is a vector field whose
components are the partial derivatives of ¢ with respect to x, y and z. This can be
expressed by means of the operator V in this way:

56 04 ©
grad g = Vi = (a_i aj af)

" On the other hand, divergence of a vector field f = (U, V, W), which is a scalar
field, can be written down by means of the scalar product of V and f: ;
U a8V aw
divf = V-f = V- (U,V,W) = i che
Bz ' By 9z’
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Finally, curling of a vector field f = (U, V, W) can be written down as the vector
product of V with f:

i

k) j k
ol = Vel . 2 E | (ﬂ_a_v’ oL Wi ﬂ_é‘g)
0z’ 9y’ 0 dy 9z’ 8z Gz’ Br By
u, Vv, W

V.5.4. Remark. Operators grad, div and curl play an important role in the theory of
all possible types of fields (flow fields of various fluids, gravity field, electrostatic field,
electromagnetic field, etc.). Their mathematical properties and relations are therefore
very interesting not only from the point of view of applied mathematics itself, but
also from the point of view of many other disciplines. More detailed study of these
properties would go beyond the scope of this text. Nevertheless, let us mention two
formulas whose validity follows immediately from the deﬁnitions of grad, div and
curl and it can be easily verified:

If ¢ is a twice-differentiable scalar field in a domain D C E; and f is a twice—
differentiable vector field in D then

curlgrad ¢ = 0 = (0, 0, 0), (Vv.n
divcurl f = 0. (V.8)

You already know the geometrical meaning of the gradient of a scalar function
¢ from Chapter I — grad ¢ is the vector which shows the direction of the greatest
growth of function ¢. The physical sense of the other two operators, div and curl,
will be explained in paragraphs V.6.5 and V.6.8,

V.6. The Gauss—Ostrogradsky theorem and the Stokes theorem.

We already know the “two-dimensional” Jordan theorem — see paragraph IV.5.1.
The next paragraph contains a “three-dimensional” version of the same theorem. It
says again something that is very clear at first sight. However, you would be surprised
that it is quite complicated to prove. (We do not show the proof in this text.)

Note that if no other details are given then “surface” refers to a simple piecewise-
smooth surface and “closed surface” means a closed simple piecewise-smooth surface.
(See paragraph V.1.8.)

V.6.1. Jordan’s theorem. Let o be a closed surface in Ey. Then there exist two
disjoint domains G1 and Gy in Eg such that o is their common boundary and

&) E3= G] UJUGQ,
b) l:one_dftbe domains Gy, Gy is bounded and the second is unbounded.

V.6.2. Interior and exterior of a closed surface in E;. Let o be a closed surface
in E;3 and G, G be the domains whose existence is given by Jordan’s theorem. That
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domain of Gy, G which is bounded is called the snterior of surface o and it is denoted
by Into. The second domain, which is unbounded, is called the ezterior of o and it
is denoted by Exto.

We say that the closed surface o is oriented to its exterior (respectively to its
interior) if its normal vector (at all points of o where it exists) is oriented to the
exterior of o (respectively to the interior of o).

V.6.3. The Gauss—Ostrogradsky theorem. Suppose that
a) vector function f has continuous partial derivatives in domain D C Es,
b) o is a closed surface in D, oriented to its exterior and such that Inte C D.

Then ‘ /f f-dp = fj/ div f dzdydz. (v.9)
o Int o

V.6.4. Example. Calculate the flux of the fleld f(z,y,2) = syi+yzj+ zzk
outward through the surface o of the cube (0,1} x {0,1) x {0,1).

All the components of f are continuously differentiable in the whole space E;
and the considered surface is a closed surface in Ej, oriented outward. Thus, the
Gauss—Ostrogradsky theorem yields

f/f—dp:-/:/:/I"”divfd:cdydzz
fff a(xy) 3(5;;) a(;:))dg:dydz:/0]'/01/0]@+z+w)d:sdydz=%‘

V.6.5. Physical sense of divergence. Suppose that the vector function f has
continuous partial derivatives in domain D C E; and A € D. Denote by o the
sphere with center A and radius r, oriented to its exterior. Then

div f(4) = lim Ay f(f) /:// dedydz =
r—0- :";' r Int oy

1
= r_’0+ §1rr3 //./f,!: . div f(z,y,2) dedydz = 111[1)1+ 511'?'3 /:/ f(z,y,2) - dp.

If the vector field f has a source at point A then ff f-dp is positive for r > 0
sufficiently small and the limit of this integral divided’ by the volume of Int o, for
r — 0+ gives the intensity of the source. Thus, div f(A) expresses the intensity of
the source of f at point A.

For example, if v is the velocity of a moving incompressible fluid then divv =0
in all points of the flow field. This follows from the fact that the conservation of mass,
together with the incompressibility of the fluid, gnarantees that the fluid cannot arise
or disappear at any point A and so the velocity field has no sources (positive or
negative). (The equation div v = 0 is the very well known equation of continuity
for incompressible fluids — you will hear more about it later, in mechanics of fluids.)

100

V.6.8. Stokes’ theorem. Suppose that
a) vector function f has continuous partial derivatives in domain D C E,,

b) o is a surface in D whose boundary C is oriented in accordance with .

Then j{ f.ds = / j curl f - dp. (v.10)
(o) 4

V.6.7. Example. Evaluate the line integral [ f-ds where f(z,y,2) = zzi+
zyj+ 3zzk and C is the boundary of surface o which is the portion of the plane
2z+y+2z=2 in the first octant. C' is oriented counter—clockwise as viewed from
above.

A vector perpendicular to ¢ is given by the coefficients from the equation of
g% (2,1,3) 1 you sketch' a figure, you can observe that surface ¢ is oriented in
accordance with its boundary C if its normal vector differs from the vector (2,1,1)
only by the length: n =(2,1,1)/v8.

The components of vector field f are continuously differentiable in E; and
curl f = (0, z — 32, y). 'Thus, the Stokes theorem yields

/-f-nds=]fcurlf-dp=j/(0,:c—3z,y)-dp. :
c o o )

Surface ¢ can be parametrized by the mapping
Plu,v) : z=u, y=v, 2=2-2u—v; [u,v]€B

where B = {[u,v] € Ez; 0 <u <1, 0 <v<2-2u}. We can easily find that
Py =1(1,0,-2), P, =(0,1,-1) and P, x P, = (2,1,1). Since the orientation
of the last vector is the same as the orientation of the normal vector m, surface o is
oriented in accordance with parametrization P, Using formula (V.6), we obtain

] (0,2 —3z,y).-dp

2-2u
f (0, — 6 + 6u + 3v, v) (2,1, l)dudv_f / [7u+4v—6]dvdu__—1.

o

V.6.8. Physical sense of cur]ing.
Suppose that the vector function f has
continuous partial derivatives in the
domain D C E3, A€ Dandaisa
vector whose length is one. Denote by
o, the disk with center A, radius r 'and
normal vector a. Denote further by Cr
the circle which is the boundary of the: . .-

disk ¢, and is oriented in accordance . . .. cr- Fig. 16
with ¢,. Then we have
4 . curl f(A) a:
1f(4)-a = lim ——F"— -
curl f(4)-a r_l’!10+ f r"#0+ =y // curl f(z,y,2)-adp =
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r——>0+ wr 2 f] s f(x,y)Z) dp N "‘lirgl"l‘ ’i'l"l"2 f f i kL

Thus, curl f{4) is the vector whose scalar product with any unit vector a ex-
presses the intensity of circulation of f around circles perpendicular to a, oriented in
accordance with a.

V.7. Exercises.

1. o= {[w,y,z] €BEy; 2249 42=4,220,y>0, 2> 0}, o is oriented so that

its normal vector m at every point of o satisfies n-i > 0.

a) Verify that the mapping P(u,v) = [2 cos u, 2 sin u, v] for [u,v] € B =
{—m/2,m/2) x (1,4) is & parametrization of o (i.e. that is has all the properties
named in paragraph V.1.1). Decide whether ¢ is oriented in accordance with this
parametrization.

b) Show that the mapping Q(u,v) = [vZ—uZ, u,v] for [u,v] € B =(-2,2)x
{1,4) is not a parametrization of o.
2. o is the half-sphere {[z,y,2] € Bg; 2® +¢y* +2° = a?, z >0} (a > 0), oriented
by the normal vector n = (ny,n2,n3) such that ng > 0. Set Bis B = {[u,v] €
Ey; u? 4 v? < a?}.
a) Show that the mapping
2au 2av 2a®

P(u,v) = :
(ﬂ U) a2+u2+v2’a2+u2+v2’a2+u2+02.
is a parametrization of surface ¢ (i.e. it has all the properties named in paragraph
V.1.1). Decide whether o is oriented in accordance with this parametrization.

b) Show that the mapping P(u,v) = [u, v, Va2 —u? —v?|, [u,v] € B, isnot a

parametrization of surface ¢.

;—a}; [u,v] € B

3. o is a simple smooth surface, oriented by the normal vector n. Find its parametri-
zation, show that it has all the properties named in paragraph V.1.1, and determine
whether ¢ is oriented in accordance with the chosen parametrization.

a) o is the triangle with the vertices A = [1,-1,2], B = [2,1,3], C -1,2,4],
n-j<o0

b) o= {[z,y,2] €Es; 2® +y* =4, £ 20, 0 <z <4}, n=(1,0,0) at the point
P=[2,0,2]

¢) a={[z,y.2] €y 2® +y* =2, ¢y20, 25 1}, P =1[0,0,0], n=(0,0,-1)

d) o is the parallelogram with the vertices A = [1,1,1], B = [1,4,4], C = [0,5,6],
D =[0,2,3], n x k >0 at every point of ¢

e) o is the disk in the plane = = 2 with its center at the point [2,-1,3] and radius
r=4,n=(-1,0,0) at every point of o

f) o= {[z,y,2]€Es; 2 +9y2 +2* =4 222}, P=[0,0,2}, n=(0,0,1)

g) o={[z,y,z] €Es; sy—2=0, 2° +y* <} (¢>0), n-k>0
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4. Verify that the set o = {X € Ey; X = P(u,v), [u,v] € B} is a simple smooth
surface in B3 and P is its parametrization,

a) Plu,v) = [u, 4u? + 9%, v], B = {[u] € Ep; u®/9+0?/4 < 1}

b) P(u,v)= [y, v,4—u—v], B= {lu,v) €Eg; u>0, v >0, u+tv <4}

¢) P(u,v) = [3cos u cos v, 3 sin u cos v, 3 sin v], B=(0,7) x(0,7/4)

5. Verify that o is a simple piecewise-smooth surface. Find parametrizations of the

simple smooth parts of o,

a) o={[z,9,2] €Eg; z=4— z? +y2, z > 0}
o= {[z,y,2] € E3; z=4— /22 2, 0<z<2}

¢) o1Uoz where o1 = {[z,y,2] € E3; ¢* +1° < 16, 2z = 0}, o0 = {[m,y,z} €
E;z; z2=4— /22 +42, 2?_0}

-d) o is the boundary of D = {[z,y,2] € Eg; 2% +y? +22 <4, 4—2? —y? < 4z}

6. Decide about the existence of the integral [ fa f dp.
a') f(zaysz) ! (xy In |$|)/zz o= {[3’:1:”':2] € ES; (1—2)2 +y2 +22= L,z> U}
b) flz,y,2) = (ey In |2])/z, o = {[z,y,2] € Bgj z=1+2% +4?, 2 <2}

e flz,y,2) = (2® +y* +2* = 1)7!, o is the sphere with its center at the point
5'=[0,0,3] and radius r = a

7. Evaluate the area of the surfaces from examples 4c, 5b, 5c, 3g
8. Evaluate the surface integrals

a) f/myzdp, o= {lz,y,2] € By; y? +9:* =9, 1<2 <3, y 20, 2> 0)

b) f/ zz dp, o is the triangle with the vertices 4 = [1,0,0], [0,1,0] and
“ c =10,0,1]

/ z(*+y*) dp, o = {[z,y,2] € By; 2® + 9> + 2* = a?}, (a > 0)
d) ff(xy+yz+zz)dp, o ={[z,4,2] € By; y = V2T T 22, o? + 2% < 2}

e) //("’“+y+2) dp, o= {[a,y,2] € Es; 2* +4* + 22 = a?, £ <0} (a > 0)

dp
f) ffvmg o ={[z,y,2] € Bg; e’ +y2 =9, 0< = <3}

g) ff(:cz +y%) dp, o is the surface from example 5d

9. Find the center of mass of surface ¢ if mass is distributed on ¢ with the density
2.

a) play,z) =2, o={[2,4,2] €Ey; 2= /2 + 22, y 20, 0< 2 < 2}
b) p(xsy!szmyza g = {[msy,z:[EEE}; $2+2224, z >0, 220, 059’53}
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