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Introduction

This text contains an approximate list of definitions and theorems that students meet
in the Mathematics I course in their first term of studies at the Faculty of Mechanical
Engineering at the Czech Technical University, together with brief remarks, comments
and examples. Some proofs and derivations of formulas are also included. These can be
regarded as useful exercises leading to a better understanding of the sense and properties
of notions that we deal with. The text was not written to be a completely independent
textbook, especially due to brief explications and the limited number of solved and
unsolved problems. It is important to emphasize that, in order to be well prepared for
the examination in Mathematics I, it is necessary to solve problems individually and
to think over a large number of examples. Appropriate examples and exercises can be
found e.g. in the textbook [NK].

This revised edition contains Chapter V on the definite (Riemann) integral. This
topic is studied at the end of the winter term in the Mathematics I course in the last
years, but it is usually examined in the summer term together with double, triple and
other integrals. However, it is logical to include the chapter on the Riemann integral
into the textbook Mathematics I because it completes the calculus of functions of one
variable.

This text is a free English version of the textbook [Ne].

Numbers of paragraphs or sections, whose contents are not actually required for the
examination and which are addressed to more interested readers, are marked by the
symbol ∗ on the right side above.

The author wishes to express his thanks to Mr. Robin Healey for carefully reading
the text, correcting the language and especially for his readiness to discuss with the
author the right sense of various formulations and to explain to him some fine points
of the English language. If you still find some misprints, incorrect or not quite clear
expressions or connections in the text then it is only the author who is responsible.
It will be a pleasure for both Mr. Healey and the author if the text helps readers not
only in their studies of mathematics, but if it also contributes to their orientation in
English mathematical terminology and phraseology, and if it encourages them to go on
and study further scientific literature written in English.

We suppose that readers are familiar with the notion of a set and that they know
the set operations union, intersection, complement and difference. Let us remind the
reader that an empty set is denoted by ∅. We can use this notation for describing a set:
M = {x; V (x) }. We read this as: M is the set of all elements x such that V (x) holds.
(V (x) is some statement that can be made about x.)

We also assume knowledge of the following notions:

◦ mapping (of a set A to a set B – we use for instance the denotation F : A → B ),

◦ one–to–one mapping (also called injective mapping ),

◦ mapping of the set A onto the set B (also called surjective mapping ),

◦ bijective mapping of the set A onto the set B (a mapping which is injective and
surjective),

◦ inverse mapping (we denote this by F−1),

◦ composite mapping (we denote this by F ∗G or F ◦G),
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◦ domain of a mapping (we denote this by D(F ) ),

◦ range of a mapping (we denote this by R(F ) ).

Further topics which are also assumed to be known from secondary school include
some elementary notions of mathematical logic, i.e. a statement and operations with
statements:

◦ negation of a statement X (we denote this non X),

◦ conjunction of statements X and Y (we denote this X ∧ Y and we read it “both X
and Y hold” or briefly “X and Y ”),

◦ alternative of statements X and Y (we denote this X∨Y and we read it “X or Y ”),

◦ implication (we denote this X =⇒ Y and we read it “X implies Y ”, “Y follows from
X”, “if X holds then Y also holds”, “X is a sufficient condition for Y ”, “Y is a
necessary condition for X”, “Y holds provided that X holds”, etc.) and

◦ equivalence (we denote this X ⇐⇒ Y and we read it “X holds if and only if Y
holds”, “X is equivalent to Y ”, “X is a necessary and sufficient condition for Y ”,
“Y is a necessary and sufficient condition for X”, etc.).

We shall often use so called quantifiers:

◦ a universal quantifier is denoted by ∀ and it can be used for example in the sentence:
∀ x ∈ I : V (x) – we read it “for each x ∈ I the statement V (x) holds” or “each
x ∈ I has the property V (x)”,

◦ an existential quantifier is denoted by ∃ and it can be used for example in this way:
∃ x ∈ I : V (x) – we read it “There exists x ∈ I such that the statement V (x)
holds.”

Quantifiers can also be used to create more complicated statements and assertions. Do
not underestimate them! Their incorrect usage can entirely change the sense of various
statements. You can compare e.g. these two sentences which differ only in the order of
the quantifiers: 1) “To every married man there exists a woman who is his wife.” 2)
“There exists a married man such that every woman is his wife.”

If n is a natural number (we use the denotation: n ∈ N) then the set of all ordered
n–tuples of real numbers is denoted by Rn. Thus, R2 is the set of all ordered pairs of real
numbers, R3 is the set of all ordered 3–tuples of real numbers, etc. An exception is made
in the case n = 1 where instead of R1, we write only R. Elements of Rn are written for
example in this way: [ a1, a2 ], [ 1, 3 ] (if n = 2), [ x1, x2, x3 ] (if n = 3), [x1, x2, . . . , xn ],
etc. If the distance of any two elements X = [x1, x2, . . . , xn ] and Y = [ y1, y2, . . . , yn ]
from R

n is defined in such a way that it is equal to

d(X,Y ) =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2

then Rn becomes the so called n–dimensional Euclidean space. This is denoted by En .
Elements of En are often called “points” and the distance of two points X and Y is also
denoted by ‖X − Y ‖. E1 can be imagined as a straight line, E2 as a plane, etc.
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I. Linear algebra

I.1. Vector spaces

I.1.1. The n–dimensional arithmetic space. Let us define the sum of any two
elements [x1, x2, . . . , xn ] , [ y1, y2, . . . , yn ] from R

n by the formula

[x1, x2, . . . , xn ] + [ y1, y2, . . . , yn ] = [x1 + y1, x2 + y2, . . . , xn + yn ]

and the product of any element [x1, x2, . . . , xn ] from R
n and any real number λ by the

formula
λ · [x1, x2, . . . , xn ] = [λx1, λx2, . . . , λxn ] .

The set Rn with these two operations is called the n–dimensional arithmetic space. Its
elements (i.e. n–tuples of real numbers) are called arithmetic vectors.

I.1.2. Vectors in E2 and in E3 . Oriented segments AB and CD in E2 are called
equivalent if they can be identified by parallel shifting. Each class of all oriented segments
in E2 which are equivalent one to another is called a vector in E2. Any segment from
this class is called a representative of the vector. The set of all vectors in E2 is denoted
by V(E2).

Each vector in E2 is uniquely defined by any of its representatives. Vectors are de-
noted by small boldface letters (for example u, v, etc.). In a chosen Cartesian coordinate
system, every vector can be given by means of its coordinates. These are an ordered pair
of numbers (in round brackets) which is obtained in such a way that the representative
of the vector is chosen to be the oriented segment coming out of the origin, and the
coordinates of the end point of this segment are the coordinates of the vector.

If u = (u1, u2) and v = (v1, v2) are vectors in E2 and λ is a real number, then we
can define the sum of u and v and the product of u and the number λ by the equalities:

u + v = (u1 + v1, u2 + v2),

λ · u = (λu1, λu2).

It can easily be verified that the operations defined above have the properties:

(a) E2 is closed with respect to both operations. That means: if u,v ∈ V(E2) and
λ ∈ R then the sum u + v and the product λ · u also belong to V(E2).

(b) If u, v, w ∈ V(E2) and α, β ∈ R then

(b1) u + v = v + u ,

(b2) (u + v) + w = u + (v + w) ,

(b3) 1 · u = u ,

(b4) α · (β · u) = (α · β) · u ,

(b5) α · (u + v) = α · u + α · v ,

(b6) (α + β) · u = α · u + β · u .

(c) There exists the so called zero vector o = (0, 0) in V(E2). If u is any vector from
V(E2) then

u + o = u.
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(d) To every vector u ∈ V(E2) there exists a vector −u (the so called opposite vector
to u) so that

u + (−u) = o.

Due to property (a), V(E2) is said to be closed with respect to the two operations
“addition of vectors” and “multiplication of vectors by real numbers”.

By analogy, it is possible to define V(E3) (or even V(En)) and operations “addition
of vectors” and “multiplication of vectors by real numbers” in this set. These operations
in V(E3) (or in V(En)) also have properties (a) – (d).

I.1.3. Vector spaces. It can easily be verified that the operations “addition” and
“multiplication by real numbers” in the n–dimensional arithmetic space Rn have prop-
erties (a) – (d), too. Thus, the sets Rn, V(E2), V(E3) and V(En) are in a certain
sense similar. Generally, it can be observed that various nonempty sets with the oper-
ations “addition” and “multiplication by real numbers” (which satisfy conditions (a)
– (d)) appear very often in mathematics and its applications. All these sets are called
vector spaces.

Elements of concrete vector spaces need not always be classical vectors as is the case
in V(E2) and in V(E3). As examples of further vector spaces, we can mention:

◦ the set of all polynomials whose degree is less than or equal to n (i.e. functions that
have the form f(x) = a0+a1x+· · ·+anxn, where a0, a1, . . . , an are real numbers),

◦ the set of all functions defined by the equation f(x) = a0 + a1 · sin x + a2 · cos x,
where a0, a1, a2 are real numbers,

◦ the set of all sequences of real numbers, etc.

Try to suggest for yourself how it is possible to define the operations “addition” and
“multiplication by real numbers” in these spaces so that the operations have properties
(a) – (d).

Let us return to the vector space V(E2). Two vectors u = (u1, u2), v = (v1, v2) from
V(E2) are equal if and only if the corresponding coordinates are equal, i.e. u1 = v1,
u2 = v2 . This simple assertion follows immediately from properties (a) – (d) from
paragraph I.1.2. Analogous assertions also hold in V(E3) and Rn.

We are going to study a general vector space V in the next part of this chapter.
If the approach seems to be too abstract for you, you can imagine that V coincides
for instance with V(E2), V(E3) or V(En). Elements of V will also be called vectors
and they will be denoted in the same way as elements of V(E2) or V(E3), i.e. by small
boldface letters. The zero vector will be again denoted by o.

I.1.4. Theorem (uniqueness of the zero vector). There exists only one zero vector
in the vector space V.

P r o o f : Suppose that there are two different zero vectors o and o′ in V. Using
property (c) from paragraph I.1.2, we get: o = o + o′ = o′ + o = o′. This is in
contradiction with the assumption that the vectors o and o′ are different. Hence two
different zero vectors in the vector space V cannot exist.

I.1.5. Theorem. The following identities hold for any vector u ∈ V and any real
number α:
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1) 0 · u = o , 2) (−1) · u = −u , 3) α · o = o .

(We do not show the proof of this theorem here. Nevertheless, it could easily be done
by means of conditions (a) – (d) from I.1.2.)

I.1.6. Linear dependence and independence of vectors. If u1, u2, . . . , un is a
group of vectors in the vector space V and α1, α2, . . . , αn are real numbers then the
vector

α1 u1 + α2 u2 + . . . + αn un

is called the linear combination of the vectors u1, u2, . . . , un . (The linear combination
of vectors from V is a vector that also belongs to V. It is an easy consequence of the
statements in item (a) in paragraph I.1.2.)

The group of vectors u1, u2, . . . , un is called linearly dependent if there exist coef-
ficients α1, α2, . . . , αn such that at least one of them is different from zero and

α1 u1 + α2 u2 + . . . + αn un = o .

A group of vectors which is not linearly dependent is called linearly independent.

I.1.7. Theorem. If one of the vectors u1, u2, . . . , un in the vector space V is equal
to the zero vector then the group u1, u2, . . . , un is linearly dependent.

P r o o f : Let for instance u1 = o. Then 1 · u1 + 0 · u2 + · · ·+ 0 · un = o. So we have
the linear combination of the vectors u1, u2, . . . , un which is equal to the zero vector
o and not all coefficients in this linear combination are zeros. Thus, in accordance with
definition I.1.6, the group u1, u2, . . . , un is linearly dependent.

I.1.8. Theorem. The group of vectors u1, u2, . . . , un (where n > 1) from the vector
space V is linearly dependent if and only if at least one vector from this group can be
expressed as a linear combination of the other vectors of the group.

P r o o f : a) Suppose that the group u1, u2, . . . , un is linearly dependent. Then there
exist coefficients α1, α2, . . . , αn (such that at least one of them is different from zero
– let it be for instance α1) and α1u1 + α2u2 + · · · + αnun = o. Since α1 6= 0, we can
divide the equality by α1 and express u1:

u1 = − α2

α1

u2 −
α3

α1

u3 − . . .− αn
α1

un .

So the vector u1 is a linear combination of the other vectors of the group. Similarly, if
α2 6= 0 then it is possible to express u2 in the form of a linear combination of the other
vectors of the group, etc.

b) Suppose now that for example the vector u1 is a linear combination of the other
vectors, i.e. there exist coefficients β2, . . . , βn such that u1 = β2u2 + · · · + βnun. If
we put α1 = −1, α2 = β2, . . . , αn = βn then we can see that at least one of these
numbers is nonzero and α1u1 +α2u2 + · · ·+αnun = o. Hence the group u1, u2, . . . , un
is linearly dependent.

I.1.9. Theorem. The group of vectors u1, u2, . . . , un from the vector space V is
linearly independent if and only if the vector equation

(I.1.1) α1u1 + α2u2 + . . . + αnun = o
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(for unknowns α1, α2, . . . , αn) has only the zero solution α1 = 0, . . . , αn = 0.

(This theorem is an immediate consequence of the definition of linear dependence and
linear independence of vectors from paragraph I.1.6.)

I.1.10. Example. The group of vectors (1,1,0), (0,2,3) a (3,5,3) in E3 is linearly
dependent. Equation (I.1.1), which in our concrete case has the form

α1 · (1, 1, 0) + α2 · (0, 2, 3) + α3 · 5, 3, 5) = (0, 0, 0),

has for instance this nonzero solution: α1 = 3, α2 = 1, α3 = −1. Linear dependence of
the given group of vectors follows now from theorem I.1.9.

I.1.11. Theorem. Let u1, u2, . . . , un be a linearly dependent group of vectors from
the vector space V. Then every group of vectors from V which contains the vectors
u1, u2, . . . , un, is also linearly dependent.

P r o o f : The group u1, u2, . . . , un is linearly dependent, hence there exist coefficients
α1, α2, . . . , αn such that at least one of them is different from zero and α1u1 +α2u2 +
· · · + αnun = o. Let v1, v2, . . . , vm be a group of vectors which contains the vectors
u1, u2, . . . , un. Suppose that the vectors v1, v2, . . . , vm are ordered so that v1 = u1,
v2 = u2, . . . , vn = un. Then α1v1 + α2v2 + · · ·+ αnvn + 0 · vn+1 + · · ·+ 0 · vm = o.
The coefficients α1, α2, . . . , αn, 0, . . . , 0 are surely not all equal to zero. So the group
v1, v2, . . . , vm is linearly dependent.

I.1.12. Dimension of a vector space. Let n be a natural number. We say that the
vector space V is n–dimensional (or equivalently: its dimension is equal to n – we write
dimV = n) if

a) there exists a group of n vectors in V that is linearly independent,

b) each group of more than n vectors from V is linearly dependent.

I.1.13. Basis of a vector space. Let V be an n–dimensional vector space. Each
linearly independent group of n vectors from V is called a basis of the space V.

I.1.14. Remark. The dimension of vector space V equals the maximum number of
linearly independent vectors that can be found in V. It also equals the number of vectors
in an arbitrary basis of V.

I.1.15. Theorem. Let u1, u2, . . . , un be a basis of the vector space V. Then ev-
ery vector from V can be uniquely expressed as a linear combination of the vectors
u1, u2, . . . , un.

P r o o f : a) Existence of the expression: Let v be an arbitrarily chosen vector from
V. The group of vectors u1, u2, . . . , un,v is linearly dependent (because it is the group
of more than n vectors). Hence there exist coefficients α1, α2, . . . , αn, β such that not
all of them are equal to zero and

α1u1 + α2u2 + . . . + αnun + βv = o.

If β were equal to zero then the above equality would imply the linear dependence of
the vectors u1, u2 . . . , un, which would be in contradiction with the assumptions of the
theorem. So β is different from zero and it is possible to express v:
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v = − α1

β
u1 −

α2

β
u2 − . . . − αn

β
un .

b) Uniqueness of the expression: Suppose that v can be also written in another way
as the linear combination of the vectors u1, u2, . . . , un: v = c1u1 + c2u2 + · · ·+ cnun.
If we subtract the first expression of v from the second one, we obtain:

o =
(
c1 +

α1

β

)
u1 +

(
c2 +

α2

β

)
u2 + . . . +

(
cn +

αn
β

)
un .

The linear independence of the vectors u1, u2, . . . , un implies: c1 + α1/β = 0, c2 +
α2/β = 0, . . . , cn + αn/β = 0. So we get equalities c1 = −α1/β, c2 = −α2/β, . . . ,
cn = −αn/β, which show that both expressions of the vector v are same.

I.1.16. Remark. Theorem I.1.15. can be “reversed”. We mean by this that one can also
prove correctness of the inverse implication: If V is a vector space and u1, u2, . . . , un is
a group of vectors with the property that each vector from V can be uniquely expressed
as a linear combination of the vectors u1, u2, . . . , un then these vectors form a basis of
the space V.

I.1.17. Example. The vectors i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) form the basis
of the vector space V(E3) because each vector a = (a1, a2, a3) ∈ V(E3) can be uniquely
written as a linear combination of the vectors i, j, k: a = a1 · (1, 0, 0)+a2 · (0, 1, 0)+a3 ·
(0, 0, 1) . Taking also into account remark I.1.14, we come to the by no means surprising
assertion that the space V(E3) is three–dimensional.

By analogy, the arithmetic vectors e1 = [1, 0, ..., 0], e2 = [0, 1, ..., 0], . . . , en =
[0, 0, ..., 1] form the basis of the space Rn. (So this space was correctly called n–dimen-
sional in paragraph I.1.1).

I.1.18. Remark. The basis of a vector space is not unique! For example – you can
easily verify that two groups of vectors i = (1, 0), j = (0, 1) and u = (2,−1), v =
(1, 1) are both bases of the vector space V(E2). Moreover, every vector space (with the
exception of the so called trivial vector space, which contains only one element – the
zero vector) has infinitely many various bases.

If V is an n–dimensional vector space and u1, u2, . . . , uj (where j < n) is a linearly
independent group of vectors in V then this group can always be filled up to the basis
of V by adding appropriate vectors from V.

I.1.19. Subspace of a vector space. Suppose that W is a subset of vector space
V. If W is the vector space (with the same operations “addition” and “multiplication
by real numbers” as in V ) then we call W the subspace of the vector space V.

I.1.20. How to recognize a subspace. Let W be a subset of a vector space V.
We wish to find out whether W is a subspace of V. The operations “addition” and
“multiplication by real numbers” are defined in W because these operations are defined
in V and W ⊂ V. Thus, W is an individual vector space itself (and consequently, it
is the subspace of V) if it is closed with respect to these operations. This means if the
sum of two arbitrary vectors from W remains in W and the λ–multiple of an arbitrary
vector from W also remains in W (for any λ ∈ R).

I.1.21. Example. The set of all arithmetic vectors, that can be written in the form
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[α, β, 0] (where α, β are real numbers), is a subspace of R3.

The set of all arithmetic vectors, that have the form [α, β, γ] (where α, β, γ are
real numbers and α > 0), is not a subspace of R3.

I.1.22.∗ Remark. Try to prove these simple assertions:

a) If u1, u2, . . . , uk is a family of vectors from vector space V then the set of all
linear combinations of the vectors u1, u2, . . . , uk is a subspace of V. This subspace
is called the linear hull of the vectors u1, . . . , uk.

b) If the family of vectors u1, . . . , uk is linearly independent then it forms a basis of
its linear hull and the dimension of the hull is thus equal to k.

I.2. Matrices and determinants

I.2.1. Matrices. A rectangular array of m · n real numbers written in m rows and n
columns is called a matrix of the type m×n (read m by n) or shortly an m×n matrix.
The numbers which are contained in the matrix are called its entries or its elements .
Matrices are usually denoted by capital letters and their entries are denoted by the
same small letters with two indices. The indices are related to the position of the entry.
For example, aij denotes the entry in the i–th row and j–th column in matrix A.

I.2.2. Example.

A =


a11, a12, . . . , a1n

a21, a22, . . . , a2n
...

...
...

am1, am2, . . . , amn

 B =

0, 2, 3, 4, 8, −5
2, 3, 5, −1, 9, 17
3, −8, 7, 6, −4, 23



A is the m × n matrix, B is the 3 × 6 matrix. If the type of matrix A is known, then
A can be written down in a shorter way: A = (aij).

I.2.3. Identity of two matrices. Two matrices are identical if they are of the same
type and if they have the same entries at corresponding positions.

I.2.4. Main diagonal, upper triangular matrix, zero matrix, transposed ma-
trix. Suppose that A = (aij) is an m× n matrix.

The entries a11, a22, . . . form the so called main diagonal in matrix A.

If all entries under the main diagonal are equal to zero, then matrix A is called the
upper triangular matrix.

A matrix whose all entries are equal to zero is called a zero matrix.

The n × m matrix B = (bij) whose entries satisfy bij = aji (i = 1, . . . , n; j =
1, . . . , m) is called a transposed matrix to matrix A. It is denoted by AT . (The 1st
column of matrix AT is identical with the 1st row of matrix A, the 2nd column of AT

is equal to the 2nd row of A, etc. In other words: the transposed matrix to matrix A
can be obtained by turning A over the main diagonal.)

I.2.5. Square matrix, identity matrix. A matrix with the same number of rows as
columns is said to be a square matrix.
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A square matrix all of whose entries on the main diagonal equal 1 and all of whose
other entries are zeros is called the identity matrix. It is denoted by E.

I.2.6. Addition of matrices. If the matrices A = (aij) and B = (bij) are both
m × n then their sum is the m × n matrix C = (cij) with the entries cij = aij + bij
(i = 1, . . . , m; j = 1, . . . , n). We use the notation C = A+B.

I.2.7. Multiplication of matrices by real numbers. If A = (aij) is an m × n
matrix and λ ∈ R, then the product of the number λ and matrix A (or in other words
the λ–multiple of matrix A) is the matrix C = (cij) of the same type m × n with the
entries cij = λ · aij (i = 1, . . . , n; j = 1, . . . , m). We use the notation C = λ · A or
C = λA.

I.2.8. Example.(
1, −3, 2
4, −1, 3

)
+

(
1, 2, 2
−1, 3, −8

)
=

(
2, −1, 4
3, 2, −5

)
, 2 ·

(
1
4

)
=

(
2
8

)
.

I.2.9. Remark. Matrices of the same type can also be subtracted: The difference of
matrices A and B is the matrix C = A+ (−1) ·B. We write: C = A−B.

I.2.10. Multiplication of matrices. If A = (aij) is an m×n matrix and B = (bij) is
an n×p matrix then the product of the matrices A and B is the m×p matrix C = (cij)
whose entries satisfy: cij = ai1 ·b1j+ai2 ·b2j+· · ·+ain ·bmj (i = 1, . . . , m; j = 1, . . . , p).
We write: C = A ·B.

I.2.11. Remark. The definition of the multiplication of matrices seems to be artificial
at first sight and so we shall analyze it once more. It can be explained by means of the
following new notion:

If [u1, u2, . . . , un ] and [ v1, v2, . . . , vn ] are arithmetic vectors from R
n then the

number u1 · v1 + u2 · v2 + · · ·+ un · vn is called their scalar product.

The rows of matrix A can be identified with arithmetic vectors from R
n (the

number of rows is m, and each of them has n entries). Similarly, we can regard the
columns of matrix B as arithmetic vectors also from R

n (their number is p, and each
of them has n entries). If you read definition I.2.10 carefully, you can observe that
the entry cij in matrix C is the scalar product of the i–th row of matrix A with
the j–th column of matrix B.

Matrices A and B can be multiplied (in this order) only if matrix A has the same
number of columns as the number of rows of matrix B. We can easily recognize whether
this is fulfilled: we write down the types of matrices A and B (for example m×n, n×p)
and the 2nd and 3rd number must be the same. Otherwise matrices A and B cannot
be multiplied (in this order).

I.2.12. Example. Verify for yourself by calculation that it holds:3, 2, 5
2, −4, 6
1, 0, 0

 ·
 1, 5

3, −2
−2, 0

 =

 −1, 11
−22, 18

1, 5

 ,

 3, 5
6, −2
−1, 0

 · (3
2

)
=

19
14
−3

 .
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I.2.13. Rules for operations with matrices. Suppose that A, B and C are matrices
and α, β are real numbers. Then each of the equalities

a) A+B = B + A, b) (A+B) + C = A+ (B + C),

c) α · (A+B) = α · A+ α ·B, d) (α + β) · A = α · A+ β · A,

e) A · (B + C) = A ·B + A · C, f) (A ·B) · C = A · (B · C),

g) A · E = A, h) E ·B = B,

i) (A+B)T = AT +BT , j) (A ·B)T = BT · AT

holds if the types of matrices are such that the operations on the left hand sides have
a sense. Try to prove equalities a) – j) for yourself under this assumption.

Multiplication of matrices is not commutative, i.e. it does not generally hold that
A · B = B · A ! If, for example, A is a 3 × 5 matrix and B is a 5 × 7 matrix then the
product A · B is a 3 × 7 matrix, while the product B · A has no sense, it cannot be
created. Moreover, even if both products A · B and B · A have a sense, there exist
examples when A ·B 6= B · A.

I.2.14. The rank of a matrix. The maximum number of linearly independent rows
of matrix A (taken as arithmetic vectors) is called the rank of matrix A. We denote it
r(A).

I.2.15. Example. Let

A =

2, 1, 5
1, 3, 7
4, −3, 1

 .

For instance – it can be verified by means of theorem I.1.9 that the first two rows of
the matrix are linearly independent. The third row is the linear combination of the first
two rows (it is equal to the difference of the 1st row (multiplied by 3) and the 2nd
row (multiplied by 2)). Hence all three rows form the linearly dependent group. The
maximum number of linearly independent rows is two, and for this reason r(A) = 2.

I.2.16. Remark. It is natural to put the question whether it is possible to define
the rank of a matrix by means of its columns instead of its rows (i.e. as the maximum
number of linearly independent columns, if the columns are identified with arithmetic
vectors). The answer is simple: YES. The “row definition” and the “column definition”
assign to the matrix the same number as its rank. However, we should mention that
the exact proof of this assertion is not quite simple.

If we deal with more complicated matrices than matrix A from example I.2.15, we
are not able to recognize at first sight which rows form a linearly independent group
and conversely, which ones are linear combinations of other rows. That is why we shall
study the problem of how to specify the rank of a matrix in greater detail in several
following paragraphs.

I.2.17. Theorem. Let A be an m × n upper triangular matrix and let all entries on
the main diagonal be different from zero. Then the rank of A is equal to the minimum
of the numbers m, n.

I.2.18. Example. Instead of showing a general proof of theorem I.2.17, let us study
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this special case: Suppose that
A =

3, 3, 5, 0, −3, 8
0, 1, 7, −6, 4, 3
0, 0, 5, 14, 4, 2

 .

Let us verify that the rows of matrix A are linearly independent. We can write the
vector equation

α · (3, 3, 5, 0,−3, 8) + β · (0, 1, 7,−6, 4, 3) + γ · (0, 0, 5, 14, 4, 2) = (0, 0, 0, 0, 0, 0).

If we write down the corresponding equations for all coordinates, we obtain a system of
six linear algebraic equations for three unknowns: α, β and γ. We can easily find that
there exists only one solution: α = β = γ = 0. The linear independence of the rows of
matrix A now follows from theorem I.1.9. Their number is three, hence r(A) = 3. By
analogy, the matrices

1, 3, −2
0, 4, 7
0, 0, 5
0, 0, 0

 ,


−2, 3, 0, 5
0, −1, 5, 0
0, 0, 15, 1
0, 0, 0, 7

 ,

(
2, 1
0, 4

)
,


5
0
0
0

 ,

(
1, 2, −5, 8

)

have the ranks 3, 4, 2, 1, 1.

I.2.19. Elementary row and column operations. If we have to find the rank of
a general matrix A which is not triangular, then we can transform the matrix to an
upper triangular matrix (with non–zero entries on the main diagonal) using so called
elementary row and column operations, which do not change the rank of the matrix,
and afterwards we specify the rank by means of theorem I.2.17. We shall use the fol-
lowing elementary row operations:

a) change of order of rows,

b) multiplication of some row by a nonzero number,

c) addition to some row of a linear combination of the other rows (specially, addition
of a multiple of another row),

d) omission of a row which is a linear combination of the other rows (specially, omis-
sion of a row all of whose entries are zeros or omission of a row which is a multiple
of another row).

(All the operations can also be performed with columns. We are not going to prove that
these row and column operations do not change the rank of a matrix.)

The procedure of transformation of an arbitrary matrix to an upper triangular
matrix (all of whose entries on the main diagonal are different from zero) by means of
the elementary row and column operations is called the Gauss algorithm. The algorithm
is explained in the next example:

I.2.20. Example. We find the rank of the matrix

A =


2, −1, 1, 8, 2
4, −3, 5, 1, 7
8, −6, 8, 12, 12
6, −4, 6, 9, 9

 .
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Step 1. Since a11 6= 0, we rewrite the 1st row. (If a11 = 0 then we interchange the
rows or columns so that there is a nonzero entry on the position 1,1.) Now we want to
get only zeros under the entry a11. That is why we first multiply the 1st row by 2 and
subtract it from the 2nd row, then we multiply the 1st row by 4 and subtract it from
the 3rd row and finally, we multiply the 1st row by 3 and subtract it from the 4th row.
We obtain the matrix: 

2, −1, 1, 8, 2
0, −1, 3, −15, 3
0, −2, 4, −20, 4
0, −1, 3, −15, 3

.

Step 2. We rewrite the 1st row. Since the entry at position 2,2 is nonzero, we also
rewrite the 2nd row. Now we want to get only zeros under the entry at position 2,2.
Thus, we multiply the 2nd row by 2 and subtract from the 3rd row. Finally, we subtract
the 2nd row from the 4th row. We get the matrix:

2, −1, 1, 8, 2
0, −1, 3, −15, 3
0, 0, 2, −36, 0
0, 0, 0, 0, 0

 .

Step 3. The last row contains only zeros, hence we omit it. We obtain the upper
triangular matrix: 2, −1, 1, 8, 2

0, −1, 3, −15, 3
0, 0, 2, −36, 0

 .

Due to theorem I.2.17, the last matrix has the rank 3. Thus, r(A) = 3.

I.2.21. Determinant. Let A be a square matrix. The determinant of matrix A is the
number which is denoted by detA and which is assigned to matrix A in accordance
with these rules:

a) If A = (a) is a 1× 1 square matrix then detA = a.

b) If A = (aij) is an n×n square matrix (for n > 1) then we choose an arbitrary row
of A (let us denote this row as the i–th one) and we put

(I.2.1) detA = ai1 · Ai1 + ai2 · Ai2 + . . . + ain · Ain,

where Aij is the so called co–factor of the entry aij. The co–factor is equal to
(−1)i+j · A∗ij where A∗ij is the determinant of the (n− 1)× (n− 1) square matrix
which arises from A by omission the i–th row and the j–th column. (A∗ij is called
the minor, which is the abbreviation for “minor determinant”.)

I.2.22. Remark. The sum on the right side of (I.2.1) is called the expansion of the
determinant along the i–th row. It can be proved that the choice of the row along
which the determinant is expanded is not important because the result is always
the same. The determinant can even be expanded along an arbitrary column. The
expansion of the determinant along the j–th column is:

13



detA = a1j · A1j + a2j · A2j + . . . + anj · Anj.

It can be easily verified that the determinant of a 2× 2 square matrix A is:

detA = a11 a22 − a12 a21.

Remember this simple formula !

The expansion of the n × n determinant along some row or column leads to the
expression of this determinant by means of n (n − 1) × (n − 1) determinants. Each of
these determinants can be further expanded along some of its rows or columns and so the
problem is transformed to a question of calculation of (n−2)×(n−2) determinants. We
can proceed in this way until we come to 2×2 determinants (or even 1×1 determinants)
which we already know how to compute.

I.2.23. Remark. The determinant of matrix A is often written down analogously as
matrix A, only instead of round brackets we use straight vertical lines.

I.2.24. Saruss’ rule. The determinant of a 3× 3 matrix can also be, apart from the
expansion along some row or column, computed by the so called “Saruss’ rule”:

detA = a11 · a22 · a33 + a12 · a23 · a31 + a13 · a21 · a32

− a13 · a22 · a31 − a11 · a23 · a32 − a12 · a21 · a33.

The correctness of this formula can be verified by comparison with the result that can
be obtained by expansion along some row or column. You can easily remember the
formula by means of the following scheme:∣∣∣∣∣∣

a11, a12, a13

a21, a22, a23

a31, a32, a33

∣∣∣∣∣∣
a11, a12, a13

a21, a22, a23

����
����
�
���

HHHj
HHHj
H
HHj���� ����

I.2.25. Problems. Verify that

a)
∣∣∣∣2, 5
3, 7

∣∣∣∣ = −1, b)
∣∣∣∣∣∣
4, 8, 3
5, −1, 0
3, 2, −4

∣∣∣∣∣∣ = 215,
c)

∣∣∣∣∣∣∣∣
4, 2, 5, 0
2, −1, 0, 2
3, 6, −8, 2
7, 1, 0, 1

∣∣∣∣∣∣∣∣ = −501.

To compute the last determinant, it is advantageous to use the expansion along the 3rd
column. (Why?)

I.2.26. Geometrical meaning of the determinant. a) Suppose at first that A is
a 2 × 2 square matrix. We can consider its rows to be the vectors a1 and a2. Let us
fill in these two vectors to the parallelogram in plane E2. You can verify by an easy
calculation that the area of the parallelogram is equal to | detA|.
b) Assume now that A is a 3× 3 square matrix whose rows are the vectors a1, a2 and
a3. Let us fill in these vectors to the parallelogram in space E3. Then the volume of the
parallelogram is equal to | detA|.
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c) Generally, let A be an n × n square matrix whose rows are the vectors a1, . . . ,
an. Let us fill in these vectors to the n–dimensional parallelogram in En. Then the
n–dimensional volume of the parallelogram is | detA|.

Assertions a), b) and c) remain valid if we work with the columns of matrix A
instead of its rows.

I.2.27. Important properties of determinants. Knowledge of the following as-
sertions is very useful for computing determinants. Assume that A is an n × n square
matrix (where n > 1).

a) If all entries in some row (or column) of A are zero then detA = 0. (This is
seen if we expand the determinant along the zero row or column.)

b) detA = detAT

c) Interchanging two rows (or columns) changes the sign of the determinant.

d) If two rows (or columns) are identical, the determinant is zero. (This is the
consequence of item c): Interchanging two same columns changes the sign of the
determinant. However, the new matrix is identical with A, so its determinant is
equal to detA. The equality − detA = detA implies that detA = 0.)

e) If we multiply some row (or column) of matrix A by a number λ then the de-
terminant of the new matrix is equal to λ · detA. (This can be easily proved by
expanding the determinant along the multiplied row or column.)

f) If any row (respectively column) of A is a multiple of another row (respectively
column) of A, the determinant of A is zero. (This is an easy consequence of items
d) and e).)

g) If any row (respectively column) of A is a linear combination of the other rows
(respectively columns) of A, the determinant is zero. (We can prove this if we ex-
pand the determinant along the row (respectively column) that is the linear com-
bination of the other rows (respectively columns) and apply the assertions from
the items d) and e).)

h) If A and B are n× n square matrices then det(A ·B) = detA · detB.

I.2.28. Remark. The determinant of the n× n identity matrix (for arbitrary n ∈ N)
is equal to 1.

More generally: The determinant of a square upper triangular matrix is equal to
the product of all entries on the main diagonal. Try to verify for yourself that this
simple assertion is true.

(The expression “square upper triangular matrix” sounds rather strange, however
when you read carefully the definition of a square and of an upper triangular matrix, you
can see that the adjectives “square” and “upper triangular” are not in contradiction.)

The determinant of an n×n matrix was defined in paragraph I.2.21 by means of the
expansion along some row (or column). Determinants of “smaller” matrices can really
be calculated by means of these expansions. However, the calculation of determinants
of “larger” matrices by means of the expansions along rows or columns would require an
extremely large number of operations. (For instance, in the case of a 100×100 matrix, no
modern computer would be able to do it in the epoch of existence of our universe.) Such
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determinants can be calculated by other (so called numerical) methods. For example:
Applying the operations from item h) of paragraph I.2.27, the determinant can be
transformed to the determinant of an upper triangular matrix. Then the assertion from
the first part of this paragraph can be applied.

I.2.29. Regular and singular matrices. An n × n square matrix which has the
maximum possible rank (i.e. n) is called a regular matrix.

A square matrix which is not regular is called singular.

I.2.30. Inverse matrix. Suppose that A is an n×n square matrix and E is the n×n
identity matrix. An n× n matrix A−1 is called the inverse matrix to matrix A if

A · A−1 = E.

You will see in the following paragraphs that the inverse matrix A−1 need not
exist to each square matrix A !

I.2.31. Theorem. Let A be a square matrix. Then the following statements are
equivalent:

a) A is regular.

b) detA 6= 0.

c) The inverse matrix A−1 exists.

(We omit the proof of this theorem. The theorem states, among other things, when the
inverse matrix does exist.)

I.2.32. Theorem. If A and B are n × n regular matrices then matrix A · B is also
regular. Moreover, it holds: (A ·B)−1 = B−1 · A−1.

P r o o f : Matrices A and B are regular, hence their determinants are different from
zero. (See theorem I.2.31.) Assertion I.2.27 h) implies: det(A ·B) = detA ·detB, which
is different from zero. Using theorem I.2.31, we can see that matrix A ·B is regular. The
formula for (A·B)−1 follows from the equalities (A·B)·(B−1 ·A−1) = A·(B ·B−1)·A−1 =
A · E · A−1 = A · A−1 = E.

I.2.33. Theorem. If matrix A is regular then matrix A−1 is also regular. Moreover,
it holds:

a) (A−1)−1 = A, b) A · A−1 = A−1 · A = E.

P r o o f : a) If matrix A−1 were singular, it would be 1 = detE = det(A · A−1) =
detA · detA−1 = detA · 0 = 0, which is impossible. Hence A−1 is regular. Further, one
has: (A−1)−1 = (A · A−1) · (A−1)−1 = A · [A−1 · (A−1)−1 ] = A · E = A.

b) The formula A · A−1 = E is already known. It remains to show that it also holds
A−1 ·A = E. Denote B = A−1. Obviously, one has: A−1 ·A = B ·(A−1)−1 = B ·B−1 = E.

I.2.34. Theorem (uniqueness of the inverse matrix). If a square matrix A has
an inverse matrix then the inverse matrix is unique.

P r o o f : Suppose that both A−1
I and A−1

II are inverse matrices to matrix A. Then we
have:
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a) A−1
I · A · A

−1
II = (A−1

I · A) · A−1
II = E · A−1

II = A−1
II ,

b) A−1
I · A · A

−1
II = A−1

I · (A · A
−1
II ) = A−1

I · E = A−1
I .

This means that A−1
I = A−1

II . Thus, the inverse matrix (if it exists) is unique.

I.2.35. Remark. A practical question is how to compute the inverse matrix A−1 to a
given regular square matrix A. For instance, it can be proved that

A−1 =
1

detA

A11, . . . , A1n
...

...
An1, . . . , Ann


T

where Aij are co–factors of the entries aij in matrix A (see paragraph I.2.21, item c).
However, the practical application of this formula for larger n is not advantageous, due
to the necessity to compute the co–factors Aij, which can be very laborious. There exists
a less laborious procedure, based on the same idea as the Gauss algorithm described in
I.2.20. It is explained in example 159, pp. 9–10, in the textbook [NK].

I.3. Systems of linear algebraic equations

I.3.1. Basic notions. The system of equations

(I.3.1)

a11 · x1 + a12 · x2 + . . . + a1n · xn = b1

a21 · x1 + a22 · x2 + . . . + a2n · xn = b2
...

am1 · x1 + am2 · x2 + . . . + amn · xn = bm

(where a11, a12, . . . , amn, b1, b2, . . . , bm are given real numbers and x1, x2, . . . , xn are
unknowns) is called the system of linear algebraic equations. The matrices

A =


a11, a12, . . . , a1n

a21, a22, . . . , a2n
...

am1, am2, . . . , amn

 , (A |B) =


a11, a12, . . . , a1n

a21, a22, . . . , a2n
...

am1, am2, . . . , amn

∣∣∣∣∣∣∣∣∣
b1

b2
...
bm


are called the matrix of the system (I.3.1) and the augmented matrix of the system
(I.3.1). If we further denote

X =


x1

x2
...
xn

 , B =


b1

b2
...
bm

,

we can write the system (I.3.1) in the much shorter way:

(I.3.1) A ·X = B.

A solution of the system (I.3.1) is every ordered n–tuple of real numbers x1, x2, . . . , xn
which satisfies the system. Solutions of the system can also be regarded as arithmetic
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vectors, i.e. as elements of Rn. We believe that no misunderstanding can arise if the
solution taken as an arithmetic vector is denoted in the same way as the solution taken
as an n× 1 matrix (i.e. for example by X in both cases).

If all the numbers b1, b2, . . . , bm are equal to zero, then the system (I.3.1) is called
homogeneous. In the opposite case, system (I.3.1) is called non–homogeneous. The ho-
mogeneous system can be shortly written as the matrix equation

(I.3.2) A ·X = O.

where O is the m× 1 zero matrix.

A non–homogeneous system need not always have a solution. (Example: x1 +x2 =
1, x1 + x2 = 2) On the other hand, an homogeneous system always has at least one
(zero) solution x1 = · · · = xn = 0. (This solution is called the trivial solution.) Of
course, in some cases it also has other, non–zero (= non–trivial) solutions.

Two systems of equations are called equivalent if they have identical sets of solutions.

Our next task is to learn to find all solutions of the system (I.3.1) and to study the
structure of the set of all solutions of the system (I.3.1) (or (I.3.2)).

I.3.2. Gaussian elimination. This method can be used to solve the system (I.3.1).
You will study it in detail in the exercises. However, here are the basic steps:

Step 1. Write down the augmented matrix of the system. The matrix can be trans-
formed to an upper triangular one by means of elementary operations described in
items a) – d) in paragraph I.2.19 and in example I.2.20. If possible, avoid interchanges
of columns – they correspond to interchanges in the order of unknowns and they are of-
ten sources of mistakes for beginners. If you cannot avoid interchanges of columns, then
you should write the unknowns above the column which contains coefficients standing
at this unknown. The (n + 1)–th column cannot be interchanged with any other one
because it contains right hand sides of the equations in the system (I.3.1). Nevertheless,
in what follows we suppose that interchanges of columns were not necessary.

Step 2. Write down the system of equations which corresponds to the last matrix. (It
is equivalent to the original system we have to solve.) This system can be successively
solved from the last to the first equation. Each of the equations can be regarded as the
equation for one unknown only – that unknown with the lowest index.

2a) If the last equation has the form cnxn = γ (where cn 6= 0) then one can use it to
express xn, and substituting its value to the preceding equation, one can get xn−1, etc.

2b) If the last equation has the form 0 = γ (where γ 6= 0) then the system has no
solution.

2c) If the last equation has the form ckxk + ck+1xk+1 + · · ·+ cnxn = γ (where ck 6= 0)
then xk+1, xk+2, . . . , xn can be put equal to parameters which can be denoted for
example by p1, p2, . . . , pn−k. We can express xk from this equation. Substituting for
xk, xk+1, . . . , xn to the preceding equation, we can use it to get xk−1, etc. The system
has now infinitely many solutions. Concrete solutions can be obtained by a concrete
choice of values of parameters p1, p2, . . . , pn−k.
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I.3.3. Remark. Let us first study the homogeneous system (I.3.2). It is obvious that
if we solve it by Gaussian elimination, case 2b) cannot appear. (The last column of
the augmented matrix contains only zeros, and row operations a) – d) from paragraph
I.2.19 cannot affect it. That is also why it is sufficient to work only with the matrix of
the system. The augmented matrix is not necessary.) Thus, the homogeneous system is
always solvable – it has the unique, trivial, solution in case 2a) or infinitely many solu-
tions in case 2c). The following theorem gives important information on the structure
of the set of all solutions of the system (I.3.2).

I.3.4. Theorem. The set of all solutions of the homogeneous system (I.3.2) is a
subspace of the n–dimensional arithmetic space Rn whose dimension is equal to n−r(A).

P r o o f : Let us first show that the set of all solutions of the system (I.3.2) is a
vector space which is a subspace of Rn. If X and Y are solutions of (I.3.2) then it
holds: A · (X + Y ) = A · X + A · Y = O + O = O, i.e. X + Y also is a solution of
the system (I.3.2). Similarly, if X is a solution of (I.3.2) and λ is a real number then
A · (λ · X) = λ · (A · X) = λ · O = O, i.e. λ · X also is a solution of (I.3.2). The set
of all solutions of the homogeneous system (I.3.2) is a subset of Rn because its every
element belongs to Rn and it is closed with respect to the operations “addition” and
“multiplication by real numbers”. Therefore it is a subspace of Rn.

The assertion on the dimension of the subspace follows from theorem I.2.17 and from
the procedure described in paragraph I.3.2. (The dimension is equal to the number of
parameters p1, p2, . . . , pn−k in paragraph I.3.2 – think over this fact for yourself.)

I.3.5. Example. Let us solve the system x1 + x2 − 3x3 = 0,
5x1 − 2x2 − 8x3 = 0,
3x1 − 2x2 − x3 = 0.

The matrix of the system is transformed in accordance with instructions from para-
graphs I.3.2 and I.2.19:1, 1, −3

5, −2, −8
3, −4, −2

 ∼

1, 1, −3
0, −7, 7
0, −7, 7

 ∼

1, 1, −3
0, −7, 7
0, 0, 0

 ∼
(

1, 1, −3
0, −7, 7

)
.

The system of equations corresponding to the last matrix is

x1 + x2 − 3x3 = 0,
− 7x2 + 7x3 = 0.

We put x3 = p (where p is a parameter). Then the second equation yields: x2 = p.
Substituting for x3 and x2 to the first equation, we obtain: x1 = 2p. The solution can
be generally expressed: [ x1, x2, x3 ] = [ 2p, p, p ] = [ 2, 1, 1 ] p. Now it is obvious that
there exist infinitely many solutions and the set of all solutions forms a 1–dimensional
subspace of R3, whose basis is the arithmetic vector [ 2, 1, 1 ]. This corresponds to the
equality 1 = 3 − 2 (3 is the number of unknowns, 2 is the rank of the matrix of the
system) – see theorem I.3.4.

I.3.6. Remark. If the rank of matrix A is equal to the number of unknowns (i.e.
k = n) then the set of all solutions of the homogeneous system (I.3.2) is the subspace
of Rn of the dimension n− n, i.e. zero. This subspace contains only one element – the
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zero element – that is the n–tuple of nothing but zeros. This is exactly the case when
the homogeneous system (I.3.2) has only the trivial solution.

Let us deal with the general (possibly non–homogeneous) system (I.3.1) again. The
next theorem gives information about how to recognize which of the cases 2a) – 2c)
(see paragraph I.3.2) occurs.

I.3.7. Frobenius’ theorem. I. The system of linear algebraic equations (I.3.1) (for
n unknowns) has a solution if and only if r(A) = r(A |B).

II. If r(A) = r(A |B) = n then the solution is unique.

If r(A) = r(A |B) < n then the system (I.3.1) has infinitely many solutions.

I.3.8.∗ Remark. Let us analyze in greater detail the last case, i.e. the situation when
the ranks of the matrix and the augmented matrix of the system (I.3.1) are both equal
to k, where k < n. There is a natural question which is the structure of the set of all
solutions of (I.3.1). Theorem I.3.4 states that the set of all solutions of the corresponding
homogeneous system (I.3.2) forms a vector space (a subspace of Rn) of the dimension
n − k. If X1, . . . , Xn−k is a basis of this subspace then solutions of the homogeneous
system (I.3.2) can generally be expressed in the form c1X1 + · · · + cn−kXn−k. If
some concrete, particular solution Y of the general (possibly non–homogeneous) system
(I.3.1) is known, then all solutions of the system (I.3.1) can be expressed in the form:

(I.3.3) X = c1X1 + . . . + cn−kXn−k + Y .

This means that if c1, . . . , cn−k can each run independently each of the others over the
set of all real numbers, then X runs over the set of all solutions of the system (I.3.1).
This is why X is often called the general solution of the system (I.3.1).

I.3.9. Cramer’s rule. Let us now deal with the special case when system (I.3.1) is
a system of n equations for n unknowns. The matrix of the system is a square matrix.
Applying Frobenius’ theorem, one can easily obtain this important assertion:

If matrix A of the system of equations (I.3.1) is regular then the system has a
unique solution.

(Think over this fact and find for yourself reasons why this is true.) In this case, apart
from by Gaussian elimination, the solution can also be obtained by means of the for-
mulas

xi =
∆i

∆
(i = 1, . . . , n)

where ∆ = detA and ∆i is the determinant of the square matrix which arises from
matrix A interchanging the i–th column with the column of the right hand sides of the
equations in (I.3.1).

(To derive this formula, it is possible to use the matrix form of the system: A ·X = B,
the consequent form of the solution: X = A−1 ·B and the expression of A−1 by means
of the formula from paragraph I.2.35.)
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I.4. Eigenvalues and eigenvectors of square matrices

I.4.1. Motivation. In order to keep a simple notation, it will be again advantageous
to identify vectors with n–tuples of numbers, written in a column. Such vectors can be
regarded as n× 1 matrices. Thus, we shall denote vectors in the same way as matrices
(i.e. by capital letters) in this chapter.

Suppose that A is an n × n square matrix. In mathematics and its applications,
one often solves the question whether there exists a nonzero vector X ∈ V(En). such
that the product A ·X is a vector, laying on the same straight line as X. The fact that
A ·X and X lay on the same straight line means that A ·X = λX for an appropriate
number λ. The important problem is not only to find such vectors X, but also the
corresponding numbers λ. Solution of this problem plays a big role for instance in the
theory of stability of mechanical systems.

The equation A·X = λX (for the unknown λ) can generally have complex solutions.
That is why we admit the possibility that λ is a complex number and the entries
(coordinates) of vector X are also complex and not only real numbers. On the other
hand, the square matrix A, we work with in this section is always supposed to have
only real entries.

I.4.2. Eigenvalues, eigenvectors. A complex number λ is called an eigenvalue of
a square matrix A if there exists a nonzero vector X such that A ·X = λX. Such a
vector X is called an eigenvector of matrix A corresponding to the eigenvalue λ.

I.4.3. Remark. The eigenvector is not determined uniquely, the number of eigenvec-
tors corresponding to the eigenvalue λ is always infinite. Clearly, if A ·X = λX (i.e. X
is the eigenvector of matrix A corresponding to the eigenvalue λ ) and k ∈ C, k 6= 0,
then it also holds: A · (kX) = λ(kX). This means that kX is also the eigenvector of
A corresponding to the eigenvalue λ.

I.4.4. How to find the eigenvalues. The equation A ·X = λX can be written in
the equivalent form A ·X −λE ·X = O or (A−λE) ·X = O. (E is the n×n identity
matrix and O is the zero vector, i.e. it is the n × 1 zero matrix). The vector equation
(A − λE) · X = O can be regarded as the homogeneous system of linear algebraic
equations for the unknown components of the vector X. This system has a nonzero
solution if and only if the rank of the matrix of the system, i.e. the matrix A− λE, is
less than n. (See theorem I.3.4 and remark I.3.6.) The inequality r(A−λE) < n means
that the matrix A− λE is singular (see paragraph I.2.29), which is true if and only if

(I.4.1) det(A− λE) = 0.

(See theorem I.2.31.) Hence a nonzero vector X satisfying the equation A · X = λX
exists if and only if (I.4.1) holds. Equation (I.4.1) (for the unknown λ) is called the
characteristic equation of matrix A. Solving the characteristic equation, we obtain all
eigenvalues of matrix A.

I.4.5. Example. Find eigenvalues of the matrix A =

(
3, 4
5, 5

)
.

Solution: The characteristic equation of matrix A is
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det(A− λE) =

∣∣∣∣ 3− λ, 4
5, 5− λ

∣∣∣∣ = (3− λ) · (5− λ)− 4 · 5 = λ2 − 8λ− 5 = 0.

Its solution is λ1 = 4 +
√

21 a λ2 = 4−
√

21.

I.4.6. How to find the eigenvectors. Eigenvectors corresponding to the eigenvalue
λ can be obtained by solving the homogeneous system of linear algebraic equations
(A− λE) ·X = O (for unknown components x1, . . . , xn of the vector X).

I.4.7. Example. Find eigenvectors of the matrix A from example I.4.5 which corre-
spond to the eigenvalue λ1 = 4 +

√
21.

Solution: Substituting the value 4+
√

21 for λ in the vector equation (A−λE)·X =
O and expressing this equation in coordinates, we obtain the system of linear algebraic
equations

(−1−
√

21)x1 + 4x2 = 0,

5x1 + (1−
√

21)x2 = 0.

This system has infinitely many solutions: x1 = (1−
√

21)p, x2 = −5p (where p ∈ C).
Every vector X with these coordinates x1, x2 (where p 6= 0 because X cannot be
the zero vector) is the eigenvector.

I.4.8. Remark. If λ is a real eigenvalue of the matrix A then the system of equations
(A − λE) · X = O (for unknown components of vector X) has a matrix all of whose
entries are real numbers. Therefore it is possible to find a nonzero solution X of this
system with all components also being real numbers. This means that to real eigenvalues
there exist real eigenvectors.

I.4.9. Remark. The eigenvalues and the eigenvectors of square matrices have a series
of interesting properties. Their detailed explication, proofs and examples of some ap-
plications would go beyond the scope of this text. Nevertheless, we still present several
simple assertions in this remark.

a) The eigenvectors, corresponding to different eigenvalues, are linearly independent.

(Let us show that this statement is true, for simplicity, only for the family of two
eigenvectors X1 and X2, corresponding to the eigenvalues λ1 and λ2: if the vectors
X1 and X2 are linearly dependent then there exists k ∈ R, k 6= 0, such that
X2 = kX1. Then A ·X2 = A · kX1 = kA ·X1 = kλ1X1 = λ1X2. We observe that
X2 is an eigenvector, corresponding to the eigenvalue λ1. This means that λ2 = λ1.
Thus, on the other hand, if λ1 6= λ2 then the eigenvectors X1 and X2 cannot be
linearly dependent.)

b) 0 is the eigenvalue of matrix A if and only if A is singular.

(A has the eigenvalue 0 if and only if there existrs a nonzero vector X, such that
A ·X = 0 ·X = O. This vectorial equation can be regarded as a system of n linear
algebraic equations with the quare matrix A. Such a system has a nonzero solution
if and only if matrix A is singular – see remark I.3.6.)

Next simple statements are listed without proofs:
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c) If λ is an eigenvalue of matrix A and X is the corresponding eigenvector then λ is
also an eigenvalue of A and X is the corresponding eigenvector.

d) If λ is an eigenvalue of matrix A and X is the corresponding eigenvector then λ2

is the eigenvalue of matrix A2 and X is the corresponding eigenvector.

e) If the inverse matrix A−1 exists then λ is an eigenvalue of matrix A if and only if
1/λ is the eigenvalue of matrix A−1. The corresponding eigenvectors are the same.

f)∗ If A is a symmetric square matrix then all its eigenvalues are real. The eigenvectors,
corresponding to different eigenvalues, are perpendicular.

I.4.10. Example. A is a 3 × 3 square matrix. Decide whether A can have the given
eigenvalues, eventually also the given eigenvectors:

a) 2, 3 b) 3, 2 + i, −3− 2i c) 5 + i, 5− i, 7

d) 4, 3− i, 3 + i, 5 e) 7, 5, 1,

−1
2
3

,

2
3
1

,

4
6
2


Solution: a) Matrix A can have the eigenvalues 2 and 3. However, these need not be
all eigenvalues. The characteristic equation of A is a cubic equation and it can have
three different roots.

b) If 2 + i is an eigenvalue of matrix A then 2− i must also be an eigenvalue of A.
(See remark I.4.10, item c).) By analogy, since −3 − 2i is an eigenvalue, the complex
conjugate −3+2i is an eigenvalue, too. However, matrix A cannot have five eigenvalues
3, 2± i and −3± 2i because it is a 3× 3 matrix and as such, it can have at most three
different eigenvalues.

c) 5 + i, 5− i 7 can be eigenvalues of matrix A.

d) The given numbers are four, hence the answer is negative.

e) The given numbers can be the eigenvalues of matrix A. The numbers are all
different and so the eigenvectors should be linearly independent. (See remark I.4.10,
item a).) This is not fulfilled because the third vector is a multiple of the second one.
Thus, the answer is negative.

I.4.11. Problems. Find eigenvalues and eigenvectors of the following matrices.

a)

(
2, 1
1, 2

)
; b)

(
3, 4
5, 2

)
; c)

(
0, a
−a, 0

)
(a 6= 0); d)

 5, 6, −3
−1, 0, 1
1, 2, −1

.
R e s u l t s : a) λ1 = 3, X1 =

(
p
p

)
, λ2 = 1, X2 =

(
p
−p

)
; b) λ1 = 7, X1 =

(
p
p

)
,

λ2 = −2, X2 =

(
−4p
5p

)
; c) λ1,2 = ±a i, X1,2 =

(
p
±p i

)
;

d) λ = 2, X =

−2p+ q
p
q

.

(The parameters p, q can be any complex numbers such that the corresponding eigen-
vector is non–zero.)
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I.5. Survey of equivalent properties of a square matrix

We do not explain any new notion or a new method in this chapter. On the other
hand, you already know everything which follows. Nevertheless, if you are studying
linear algebra for the first time, it is possible that your knowledge is still not enough
classified and various assertions and theorems are not mutually interconnected. In order
to show clearly the connections, we give a survey of equivalent statements one can make
about a square matrix A in this chapter. (This means that for a given square matrix A
either all statements are true or all statements are false.)

We assume that A is an n× n square matrix.
Then the following statements are equivalent:

1. Matrix A is regular.

2. detA 6= 0.

(See theorem I.2.31.)

3. An inverse matrix A−1 exists.

(See theorem I.2.31.)

4. The rank of matrix A is n.

(See the definition of a regular matrix in paragraph I.2.29.)

5. The rows of matrix A are linearly independent.

(See the definition of the rank of a matrix in paragraph I.2.14 and statement 4.)

6. The columns of matrix A are linearly independent.

(See remark I.2.16 and statement 4.)

7. The homogeneous system of linear algebraic equations A · X = O has a unique
(i.e. zero) solution.

(See remark I.3.6.)

8. The general (i.e. homogeneous or non–homogeneous) system of linear algebraic
equations A ·X = B has a unique solution.

(See the Frobenius theorem I.3.7.)

9. 0 is not an eigenvalue of matrix A.

(See remark I.4.9, item b).)

Naturally, the negations of all these statements are also equivalent. Formulate and write
down all the negations yourself.
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II. Analytic geometry in E3

II.1. Some basic notions

II.1.1. Cartesian coordinates in E3 . To locate points and other objects in space
E3, we use three mutually perpendicular coordinate axes, intersecting at one point. We
denote them x, y, z or x1, x2, x3. Their orientation is chosen so that they make a right
handed system. This means that when you hold your right hand so that the fingers
curl from the positive part of the x –axis toward the positive part of the y –axis, your
thumb points along the positive part of the z –axis. The intersection of all three axes
is called the origin of the coordinate system.

To each point in E3, we can uniquely assign its Cartesian coordinates – they are
successively the distances of orthogonal projections of the considered point onto the
axes x, y, z from the origin, taken with the “+” sign if the projection lays on the
positive part of the axis and with the “−” sign in the opposite case.

By analogy, we can uniquely assign the Cartesian coordinates to each free vector
in E3 – we choose the concrete position of the vector so that its initial point is at the
origin of the coordinate system and we regard the cartesian coordinates of its end point
as the cartesian coordinates of the vector. (See also paragraph I.1.2.)

To distinguish between points and free vectors in E3, we write the Cartesian coor-
dinates of points in E3 in brackets (for example [ 1, 2, 3 ]) and the Cartesian coordinates
of vectors in E3 in parentheses (for instance (−1, 2, 5)).

II.1.2. The length (the magnitude) of a vector in E3. If u = (u1, u2, u3) is a
vector in E3 then the number

‖u‖ =
√
u2

1 + u2
2 + u2

3

is called its length (or its magnitude).

II.1.3. The scalar product of vectors in E3. If u = (u1, u2, u3) and v = (v1, v2, v3)
are vectors in E3 then the number

u · v = u1 · v1 + u2 · v2 + u3 · v3.

is said to be their scalar product (or their dot product). (Compare with the scalar prod-
uct of arithmetic vectors, defined in paragraph I.2.11.)

II.1.4. Theorem. If u and v are non–zero vectors in E3 and ϕ is the angle between
the vectors u and v then

u · v = ‖u‖ · ‖v‖ · cos ϕ.

P r o o f : Let us choose an arbitrary point A in E3 and put B = A+u and C = A+v.
Obviously, the vector B−C can also be written as u−v. Applying the cosine theorem to
the triangle ABC, we obtain: ‖B−C‖2 = ‖B−A‖2+‖C−A‖2−2 ‖B−A‖ ‖C−A‖·cos ϕ,
or ‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2 ‖u‖ ‖v‖ · cos ϕ. This yields: (u1 − v1)2 + (u2 − v2)2 +
(u3 − v3)2 = u2

1 + u2
2 + u2

3 + v2
1 + v2

2 + v2
3 − 2 ‖u‖ ‖v‖ cos ϕ. The desired formula is an

easy consequence of this equality.
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II.1.5. Remark. Thus, the non–zero vectors u, v are perpendicular if and only if
u · v = 0.

II.1.6. Another form of vectors in E3. Denote by i = (1, 0, 0), j = (0, 1, 0),
k = (0, 0, 1). If u = (u1, u2, u3) is a vector in E3 then it can also be written down in
this form: u = u1 · i + u2 · j + u3 · k.

II.1.7. The vector product of vectors in E3. Let u = (u1, u2, u3) and v = (v1, v2, v3)
be vectors in E3. The vector

u× v =

∣∣∣∣∣∣
i, j, k
u1, u2, u3

v1, v2, v3

∣∣∣∣∣∣ = (u2v3 − u3v2) · i + (u3v1 − u1v3) · j + (u1v2 − u2v1) · k

is called the vector product (or the cross product) of u and v (in this order).

II.1.8. Theorem. If u and v are non–zero vectors in E3 and ϕ is the angle between
them then

a) the vector u× v is perpendicular to both the vectors u and v;

b) ‖u× v‖ = ‖u‖ ‖v‖ · sin ϕ;

We omit the proof of this theorem. However, the assertion a) can easily be verified
computing the scalar products (u × v) · u, (u × v) · v. All of them are equal to zero.
The vector product u×v is oriented in accordance with the so called right–hand rule:
u×v points the way your right thumb points when your fingers curl through the angle
between u and v from u to v .

II.1.9. The sum of a point and a vector. If A = [ a1, a2, a3 ] is a point in E3 and
u = (u1, u2, u3) is a vector in E3, then the sum of point A and vector u is equal to the
point B = [a1 + u1, a2 + u2, a3 + u3 ] in E3. We write: B = A+ u.

On the other hand, the difference of two points B = [ b1, b2, b3 ] and A =
[ a1, a2, a3 ] in E3 (in this order) is defined to be equal to the vector u = (b1 − a1, b2 −
a2, b3 − a3). We write: u = B − A.

II.1.10. The distance between two points. Remember that if A = [ a1, a2, a3 ] and
B = [ b1, b2, b3 ] are two points from E3 then their distance ‖B − A‖ is

‖B − A‖ =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2.

(It is the length of the vector B − A.)

II.1.11. The distance between a point and a set; the distance between two
sets. If A = [ a1, a2, a3 ] is a point in E3 and M ⊂ E3, then the distance between
point A and set M is defined as follows:

d(A,M) = inf { ‖A−X‖; X ∈M }.

(See p. 46 for the definition of “inf”.) By analogy, the distance between sets M and N
in E3 is defined by the formula

d(M,N) = inf { ‖X − Y ‖; X ∈M, Y ∈ N }.
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II.2. Straight lines in E3

II.2.1. A straight line in E3. If A = [ a1, a2, a3 ] is a point in E3 and u = (u1, u2, u3)
is a non–zero vector in E3, then the set p = {X ∈ E3; ∃ t ∈ R : X = A + t · u } is
called a straight line in E3. The equation

(II.2.1) X = A + t · u; t ∈ R

is called the parametric equation for straight line p . This equation is also often written
down in a coordinate form:

(II.2.2) x1 = a1 + t · u1, x2 = a2 + t · u2, x3 = a3 + t · u3; t ∈ R.

The straight line p is said to be parallel to u and on the other hand, u is called the
directional vector of p.

If parameter t in (II.2.1) is taken not from the whole set R, but for example only
from the interval [−1, 5 ] , then (II.2.1) is the parametrization of a line segment. Its end
points are A − u and A + 5u. Similarly, if t is taken for instance from the interval
[1,=∞) then (II.2.1) parametrizes a half–line, etc.

II.2.2. The distance from a point to a straight line. Let p : X = A+t ·u; t ∈ R
be a straight line in E3 and M be a point in E3 which does not lie on straight line p .
We show two methods for evaluating the distance d(M, p).

1st method: Denote by P the nearest point to M on straight line p . (It can be proved
that such a point exists and the vector M − P is perpendicular to p .) Thus, for some
(still unknown) value of parameter t, it holds: P = A + t · u. The value of t can
be evaluated from the equation (M − P ) · u = 0, i.e. (M − P ) · u − (u · u) t = 0.
Substituting now for t back to the formula P = A + t · u , we obtain the concrete
position of P . The distance d(M, p) is equal to |P −M |.

2nd method: AMP is the right tri-
angle. Hence

d(M, p) = ‖M−P‖ = ‖M−A‖ sinϕ.

It follows from theorem II.1.8 that

‖(M−A)×u‖ = ‖M−A‖ ‖u‖ sinϕ.

Expressing sin ϕ from this equality
and substituting it to the preceding
equality, we obtain:

(II.2.3) d(M, p) =
‖(M − A)× u‖

‖u‖
.
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II.2.3. Two straight lines in space. Let p and q be two straight lines in E3 whose
parametric equations are

p : X = A+ t · u; t ∈ R, q : Y = B + s · v; s ∈ R.

We say that p and q are
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a) identical (if they have infinitely many common points),

b) intersecting (if they have just one common point),

c) parallel, (if they have no common points and vectors u, v are linearly dependent),

d) skew, (if they have no common points and vectors u, v are linearly independent).

Let us now deal with the question how to distinguish between these cases in a
particular situation. We look for common points of straight lines p and q . This task
can be reformulated: We seek for such values of parameters t, s that using them in
the parametric equations for p and q, we get the same point, i.e. X = Y. This yields:
A + t · u = B + s · v. Rewriting this into coordinates, we obtain the system of three
linear equations for two unknowns t, s:

a1 + t · u1 = b1 + s · v1 , a2 + t · u2 = b2 + s · v2 , a3 + t · u3 = b3 + s · v3 .

This is equivalent to u1 · t − v1 · s = b1 − a1 ,
u2 · t − v2 · s = b2 − a2 ,
u3 · t − v3 · s = b3 − a3 .

If the number of solutions is infinite then the number of common points of straight
lines p , q is also infinite and so the straight lines are identical.

If the above system has a unique solution, straight lines p , q have only one common
point and so they are intersecting.

If the above system of equations has no solution then straight lines p , q have
no common point. Thus, they are either parallel or skew. This depends on directional
vectors u, v. If they are linearly dependent, straight lines p , q are parallel, otherwise
they are skew.

II.2.4. A straight line given by two points. If A and B are two different points
in E3, then the straight line passing through these points can be described for example
by the following parametric equation:

(II.2.4) X = A + t · (B − A); t ∈ R.

II.2.5. Remark. Suppose that points A, B, C, D, E are different points, all lying
on the same straight line p . Put for example u = B − A, v = 2 · (B −D). Then the
equations

X = A+ t · (B − A); t ∈ R,
Y = B + s · (C − A); s ∈ R,
Z = D + r · u; r ∈ R,
X = E + α · v; α ∈ R

are all parametric equations for line p . (Why?)

II.2.6. A secant of two lines. A straight line which is intersecting the two lines p
and q is called the secant line of p and q.

II.2.7. Example. Lines p , q are given by their parametric equations

p : X = A+ t · u; t ∈ R, q : X = B + s · v; t ∈ R,
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where A = [ 3, 0,−1 ], u = (2, 1, 1), B = [ 1, 1, 1 ], v = (1, 3,−2). Find a straight line
r which intersects both lines p and q and which passes through the point M =
[−7,−6, 5 ].

Solution: Denote by P (respectively by Q) the point of intersection of line r with
line p (respectively with line q ). Then there exist such values of parameters t and s
that

(II.2.5) P = A+ t · u, Q = A+ s · v.

All of points P , Q, M lie on line r and M 6= Q, because point M does not lie on
the line q . (This can easily be verified: If M ∈ p then the vectors M − B and v
would be linearly dependent. However, this is not true, because (M−B) = (−8,−7, 4),
v = (1, 3,−2) and it is seen that none of these vectors is equal to a multiple of the
second vector.) Thus, there exists a number α ∈ R such that

P −M = α · (Q−M).

Substituting here the above expression of points P and Q, we obtain the equation:

A+ t · u−M = α · (B + s · v −M).

Writing this in coordinates and using here known coordinates of points A, B, M and
vectors u, v, we obtain a system of three linear algebraic equations for the unknowns
t, αs, α :

2 t− αs− 8α = −10, t− 3αs− 7α = −6, t+ 2αs + 4α = 6.

This system has the unique solution t = 2, αs = −2, α = 2. Hence, we also get:
s = −1. When used in (II.2.5), this gives: P = [ 7, 2, 1 ], Q = [ 0,−2, 3 ]. A parametric
equation for line r can now be written down for example by means of (II.2.4), i.e. as
the equation of a straight line passing through two known points P , Q :

X = P + τ · (Q− P ); τ ∈ R,
X = [ 7, 2, 1 ] + τ · (−7,−4, 2); τ ∈ R.

The above equation can also be written in coordinates:

x1 = 7− 7τ, x2 = 2− 4τ, x3 = 1 + 2τ ; τ ∈ R.

II.2.8. The distance between two straight lines. Suppose that the straight lines
p : X = A+ t · u; t ∈ R and
q : Y = B + s · v; s ∈ R are parallel or skew.

To find the distance d(p, q), we first find a straight line r which intersects lines
p , q and is perpendicular to both of them. Denote by P , Q points of intersection of r
with lines p , q . Then P = A + t · u, Q = B + s · v. for some values of parameters
t, s. Line r is parallel to the vector Q−P . The vector Q−P is orthogonal to vectors
u and v. So (Q− P ) · u = 0, (Q− P ) · v = 0. Substituting here from the equations
for points P and Q, we obtain (after an easy rearrangement):

(v · u) s − (u · u) t = −(B − A) · u, (v · v) s − (u · v) t = −(B − A) · v.

We solve this system of two linear algebraic equations for unknowns t, s and use the
values of t, s in the formulas for P and Q. Finally, the distance between lines p and
q can be calculated as the distance between points P and Q : d(p, q) = ‖P −Q‖.
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II.2.9. The angle between two straight lines. Suppose that p , q are straight
lines in E3 whose parametrizations are: p : X = A + t · u; t ∈ R and q : X =
B+s·v; s ∈ R. Denote by ϕ the angle between vectors u and v . Its cosine is given by
formula (II.1.6). The angle ϕ can take on the values from 0 to π (sketch a picture). The
angle between straight lines p , q is called the angle ϑ ∈ [ 0, π/2 ] , which is equal to ϕ
if ϕ ∈ [ 0, π/2 ] and it is equal to π − ϕ if ϕ ∈ (π/2, π ] . (In other words, the angle
between two lines is defined to be the acute or right angle between their directional
vectors.) Using (II.1.6), we obtain the formula:

(II.2.6) cos ϑ =
|u · v|
‖u‖ · ‖v‖

.

II.2.10. Problems. a) Find the angle between the straight lines AB and CD if
A = [−1, 2, 0 ] , B = [−2, 0, 2 ] , C = [ 4,−4, 5 ] , D = [ 2, 4, 3 ] .

b) Find the distance from the point M = [ 1,−6, 8 ] to the straight line AB, if
A = [ 2, 1, 3 ] , B = [ 3,−1, 6 ] .

c) Find the distance between the straight lines p : X = [ 6, 4, 3 ] + t · (1, 1, 1); t ∈ R
and q : X = [ 7, 0,−18 ] + s · (2,−1, 4); s ∈ R.

R e s u l t s : a) cos ϑ =
√

2/2, ϑ = π/4, b) 4.36 c) 11.83

II.3. Planes in E3

II.3.1. A plane in E3. If A = [A1, a2, a3 ] is a point in E3 and u = (u1, u2, u3),
v = (v1, v2, v3) are two linearly independent vectors in E3, then the set σ = {X ∈
E3; ∃α ∈ R, ∃ β ∈ R : X = A+α ·u + β · v } is called the plane in E3. The equation

(II.3.1) X = A+ α · u + β · v; α, β ∈ R

is called the parametric equation for plane σ . This equation is often used in the coor-
dinate form:

x1 = a1 + α · u1 + β · v1

x2 = a2 + α · u2 + β · v2

x3 = a3 + α · u3 + β · v3 ; α, β ∈ R.

II.3.2. A plane given by three points. Let A, B, C be points in E3 which do not
lie on a line. A plane passing through all these points (it will also be called plane ABC)
can be described by the parametric equation

(II.3.2) X = A+ α · (B − A) + β · (C − A); α, β ∈ R.

II.3.3. Remark. Each plane has infinitely many parametric equations. (Compare with
lines – see remark II.2.5).

II.3.4. A normal vector. Let σ be a plane, given by the parametric equation (II.3.1).
Every non–zero vector which is perpendicular to plane σ (i.e. perpendicular to vectors
u, v) is called the normal vector to plane σ .
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It follows from theorem II.1.11 that for example the vector n = u×v is the normal
vector to plane σ. All other normal vectors to plane σ are non–zero multiples of n,
i.e. they have the form c · n, where c ∈ R, c 6= 0.

II.3.5. Another analytic description of a plane. If σ is a plane whose parametric
equation is equation (II.3.1) and if its normal vector is n = (n1, n2, n3), then any point
X = [x1, x2, x3 ] in E3 belongs to plane σ if and only if (X − A) · n = 0. Expressing
the scalar product on the left hand side, we get:

(x1 − a1) · n1 + (x2 − a2) · n2 + (x3 − a3) · n3 = 0,

(II.3.3) n1 x1 + n2 x2 + n3 + q = 0,

where q = −a1n1 − a2n2 − a3n3. Equation (II.3.3) is called the equation for plane σ.

Equation (II.3.3) can be obtained from the parametric equation for plane σ (written
in coordinates) by excluding parameters α and β. Conversely, if plane σ is given by
equation (II.3.3) then its parametrization can be obtained for example in such a way
that we find three different points A, B, C of σ (i.e. points whose coordinates satisfy
equation (II.3.3)) which do not lie on a line, and we then use (II.3.2).

II.3.6. Example. Let plane σ have the equation 5x1 − 3x2 + 7x3 − 12 = 0. Then
the vector n = (5,−3, 7) is the normal vector to this plane.

II.3.7. The distance from a point to a plane. Assume that plane σ is given by
the parametric equation (II.3.1) and M is a point in E3. We derive a formula for the
distance d(M,σ).

From the right–angled triangle
APM , we obtain: d(M,σ) =
‖M − P‖ = ‖M −A‖ · cos ϕ. cos ϕ
can be expressed by means of the
scalar product of the vectors n and
(M − A):

cos ϕ =
‖n · (M − A)‖
‖n‖ · ‖M − A‖

(n is an arbitrary normal vector to
plane σ .) Using this in the formula
for d(M,σ), we get

(II.3.4) d(M,σ) =
|n · (M − A)|

‖n‖
.
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Suppose now that M = [m1,m2,m3 ] . Then n·(M−A) = n1 m1+n2 m2+n3 m3+q
(where q = −n1 a1 − n2 a2 − n3 a3). Substituting this to (II.3.4) and expressing |n| as√
n2

1 + n2
2 + n2

3 , we obtain:

(II.3.5) d(M,σ) =
|n1 m1 + n2 m2 + n3 m3 + q|√

n2
1 + n2

2 + n2
3

.

This formula is useful especially if plane σ is given by equation (II.3.3).
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II.3.8. Remark. Assume that p is a straight line, given by parametric equations
(II.2.2). Excluding parameter t from the three equations (II.2.2), we obtain a system
of two equations which can be written in the form

(II.3.6) n′1x1 + n′2x2 + n′3x3 + q′ = 0, n′′1x1 + n′′2x2 + n′′3x3 + q′′ = 0.

Straight lines are often described by such systems of two equations. Each of them is an
equation for a plane, and the straight line is the intersection of the two planes.

Conversely, if a straight line is given by two equations of type (II.3.6) then its
parametrization can be obtained for example as follows: We solve equations (II.3.6)
as two equations for unknowns x1, x2, x3. If the planes described by the equations
in (II.3.6) are not parallel (or even identical) then the general solution contains one
arbitrary parameter (see remark I.3.8). Writing down the general solution of (II.3.6),
we get the parametric equation for the line.

II.3.9. Example. Find a parametrization of the line given by two equations

5x1 + 7x2 − 4x3 + 1 = 0, 2x1 + 4x2 − 4x3 − 2 = 0.

Applying for example Gauss’ method of elimination, we express the solution of this
system: x1 = −2t − 3, x2 = 2t + 2, x3 = t (t ∈ R). These three equations represent
parametric equations for the line. Obviously, the parametric representation can also be
written in a vector form, as one equation: X = A + t · u, where A = [−3, 2, 0 ] and
u = (−2, 2, 1).

II.3.10. A position of a straight line according to a plane. Let us deal with
a straight line p and a plane σ in space E3. p and σ can find themselves in three
different positions:

a) Line p is a subset of plane σ .
b) Line p intersects plane σ at one point.
c) Line p and plane σ are disjoint, they have no common points. In this case, we

say that line p is parallel to plane σ.

How to distinguish between the possibilities a), b), c) in a particular case? Let us analyze
for example the situation when line p is given by two equations (II.3.6) and plane σ
is described by one equation (II.3.3). Equations (II.3.6) and (II.3.3) together form a
system of three linear equations for three unknowns x1, x2, x3. We solve this system.
There are three possibilities (see Frobenius’ theorem): 1) The system has infinitely
many solutions. 2) The system has a unique solution. 3) The system has no solution.
These possibilities successively correspond to the cases a), b) and c) mentioned above.
In case 2) the solution of the system gives coordinates of the point of intersection of
line p with plane σ .

We will examine the position of a line according to a plane once again in example
II.3.12, the line will be given parametrically this time.

II.3.11. The angle between a straight line and a plane. Let p be a straight
line and σ be a plane in space E3 . If line p is not perpendicular to σ then the
angle between line p and plane σ is defined to be equal to the angle between line p
and its orthogonal projection to plane σ . If line p is perpendicular to plane σ then
the angle between them is defined to be equal to π/2.
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How can the angle between line p
and plane σ be evaluated in a par-
ticular case? First we determine a
normal vector n to plane σ (see
paragraph II.3.4 or possibly also
II.3.5, II.3.6).
Let q be an arbitrary line parallel
to vector n (see Fig. 3). Denote by
ϑ the angle between lines p and
q . cos ϑ can be calculated from
(II.2.6). The angle between line p
and plane σ is equal to π/2− ϑ.
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II.3.12. Example. Line p is given parametrically: x1 = 1 + t, x2 = 2 + t, x3 = 3.
Plane σ is given by the equation 2x1 + 4x2 + 4x3 + 2 = 0. What is the position of p
according to σ and what is the angle between p and σ ?

We substitute for x1, x2, x3 from the parametric equations for p to the equation
for sigma. We obtain the equation for the unknown t: 2 + 2t + 8 + 4t + 12 + 2 = 0.
This equation has a unique solution t = −4. As the solution exists and is unique,
line p and plane σ have a unique common point. The coordinates of this point can
be obtained by the substitution of t = −4 to the parametric equations for line p :
x1 = −3, x2 = −1, x3 = 3.

For example, the vector n = (2, 4, 4) is the normal vector to plane σ. A directional
vector of line p can be chosen for example to be equal to the vector a = (1, 1, 0). The
angle between line p and a line with the directional vector n is the angle ϑ whose
cosine can be calculated by formula (II.2.6). It is equal to

√
2/2. Since ϑ is the acute

angle, the information on its cosine implies: ϑ = π/4. Hence the angle between line p
and plane σ is the angle ψ = π/2− ϑ = π/2− π/4 = π/4.

II.3.13. A position of two planes in space. Two planes in space E3 can either
be identical or intersecting in a line or parallel. If two particular planes are given and
one wishes to recognize which of these cases obtains, then the approach one can use
depends on the way the planes are given. We show two possible methods in examples
II.3.15 and II.3.16.

II.3.14. The angle between two planes. The angle between two planes σ and η
is defined to be equal to the angle between two arbitrary lines, the first of which is
perpendicular to plane σ, and the second being perpendicular to plane η .

II.3.15. Example. Analyze the position of plane σ according to plane η and evaluate
the angle between them. σ: x1 − x2 + x3 − 1 = 0 and η: 2x1 + x2 − x3 − 1 = 0.

Coordinates of common points of the two planes must satisfy both equations. The
equations represent the system of two linear equations for the unknowns x1, x2, x3.
We can easily check that the system has the solution x1 = 2

3
, x2 = −1

3
+ t , x3 = t ;

t ∈ R. These equations for x1, x2, x3 can be regarded as parametric equations of the
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line which is the intersection of planes σ and η .

The vector n′ = (1,−1, 1) is the normal vector to plane σ and n′′ = (2, 1,−1) is
the normal vector to plane η. Applying formula (II.2.6), we can now find out that the
angle between planes σ and η is equal to π/2.

II.3.16. Problems. 1) Find the distance from point M to plane σ , if
a) M = [ 7, 0,−1 ], σ: 3x1 + x2 − 2x3 + 5 = 0,
b) M = [ 2, 3,−1 ], σ: X = [ 1, 0,−1 ] + α · (2, 0, 1) + β · (0, 2, 1); α, β ∈ R.

2) What is the position of plane σ in relation to plane η and what is the angle between
σ and η if

a) σ: 3x1 − 6x2 + 6x3 + 9 = 0 and η: x1 − 2x2 + 2x3 − 3 = 0,
b) σ: 2x1 − x2 + x3 − 1 = 0 and η: x1 + x2 + 2x3 + 1 = 0 ?

3) Find the angle between the line AB (where A = [ 2,−1, 2 ] and B = [ 1,−1, 1 ] )
and the plane σ: x1 − x2 − 5 = 0.

4) Find coordinates of an orthogonal projection of the point A = [ 7, 0,−1 ] onto the
plane σ : 3x1 + x2 − 2x3 + 5 = 0.

5) In which position is line p in relation to plane σ , if p : 5x1 + 7x2− 4x3 + 15 = 0,
12x1 − 2x2 + 8x3 + 3 = 0 and σ : 5x1 + 7x2 − 4x3 − 8 = 0 ?

6) In which position is the plane ABC in relation to the plane DEF , if A = [ 1, 1, 2 ],
B = [ 1, 1, 4 ], C = [ 1, 2, 1 ], D = [ 2, 0,−1 ], E = [ 2, 1, 1 ], F = [ 4,−1, 3 ] ? Also find
the angle between the planes ABC and DEF .

R e s u l t s : 1a) 2
√

14 1b) 4/
√

30
2a) The planes are parallel and their distance is 2.
2b) The planes intersect in the straight line X = [0,−1, 0] + t (−1,−1, 1), the angle
between them is π/3 = 60◦.
3) π/6 = 30◦ 4) [1,−2, 3]
5) Straight line p and plane σ are parallel, their distance is 23/

√
90.

6) The planes intersect in the straight line X = [1, 2, 0] + t(0, 1, 2), the angle between
them is 36.67◦.

II.4.∗ Quadric surfaces in E3

II.4.1. Quadric surfaces in E3. From secondary school, you are familiar with conic
sections in E2 and with their equations. These equations are quadratic. By analogy,
quadratic equations describe so called quadric surfaces in E3 . A general equation for a
quadric surface is

(II.4.1) a11 x
2
1 + a12 x1 x2 + a13 x1 x3 + a22 x

2
2 + a23 x2 x3 + a33 x

2
3 +

+ b1 x1 + b2 x2 + b3 x3 + c = 0.

(The statement “quadric surface σ is described by equation (II.4.1)” or “(II.4.1) is the
equation for quadric surface σ ” means that quadric surface σ is the set of all points
in E3 whose coordinates satisfy equation (II.4.1).)

It can be shown that there exists a Cartesian coordinate system x′1, x′2, x′3 in E3

which is only turned on in relation to the coordinate system x1, x2, x3 and the quadric
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surface given by (II.4.1) can be described in the new system by an equation which does
not contain the mixed products x′1 x

′
2, x′1 x

′
3, x′2 x

′
3 .

To avoid complications, we shall further deal only with quadric surfaces whose
equations even in the coordinate system x1, x2, x3 do not contain the mixed products
x1 x2, x1 x3, x2 x3. This approach corresponds to situations you have been used to
from analytic geometry in plane from secondary school. For example, you have mostly
described an ellipse in the x, y –plane by an equation which contained the terms x2 and
y2 , but it did not contain the mixed product xy. This means that you have (mostly)
restricted yourself to ellipses whose axes are parallel to the x and y axes.

We present only a survey of the names of quadric surfaces which correspond to the
most important special cases of equation (II.4.1) in the following. Instead of x1, x2, x3 ,
we use the denotation x, y, z in the rest of this chapter.

II.4.2. Circular quadric surfaces (quadric surfaces of revolution). A surface
which arises by the rotation of a conic section about its axis is called a circular quadric
surface or a quadric surface of revolution. Particularly, the rotation of

– an ellipse about its axis yields . . . . . . . . . . . . . . . a circular ellipsoid,

– a parabola about its axis yields . . . . . . . . . . . . . a circular paraboloid,

– a hyperbola about its non–focal axis yields a one sheet–circular hyperboloid,

– a hyperbola about its focal axis yields . . . . . . . a two sheet–circular hyperboloid,

– two skew lines about the axis of symmetry
(lying in their plane) yields . . . . . . . . . . . . . . . . . . a circular conic surface,

– two parallel lines about the axis
(lying in the middle between them) yields . . . a circular cylindrical surface.

The first four surfaces are the so called regular quadric surfaces , the last two are the
so called singular quadric surfaces .

II.4.3. How to recognize a circular quadric surface. If the equation of a quadric
surface depends on x and y only through x2 + y2 (i.e. x and y appear in the equation
only as a part of the expression x2 + y2) then the quadric surface is circular and its axis
of revolution is the z–axis.

This holds due to the following reason: x2 + y2 is the second power of the distance
of the point [x, y, z] from the z–axis. Thus, x and y appear in the equation only through
the distance of [x, y, z] from the z–axis. The distance is the same on each circle which
lies in a plane perpendicular to the z–axis and such that the z–axis passes through its
center. This means that either all points of the circle satisfy the equation (and all points
of the circle belong to the quadric surface) or no point of the circle satisfy the equation
(and therefore no point of the circle belongs to the quadric surface).

Analogous assertions can also be formulated in the cases when the equation of some
quadric surface depends on x, z only through x2+z2 or if it depends on y, z only through
y2 + z2.

II.4.4. Quadric surfaces in the basic and in a shifted position. Conic sections
in a plane can be in a basic position (for example the ellipse x2/a2 + y2/b2 = 1 ), or in
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a shifted position (as the ellipse (x−α)2/a2 + (y− β)2/b2 = 1 ). By analogy, quadric
surfaces in E3 can also be in a basic or in a shifted position. We restrict ourselves to
quadric surfaces in the basic position in this text. Equations for the same surfaces in
the shifted position (shifted by the vector (α, β, γ) ) can be obtained from the equations
for surfaces in the basic position by replacing x2 by (x−α)2, y2 by (y− β)2 and z2

by (z − γ)2.
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II.4.5. Ellipsoid. Let a, b, c be positive numbers. The equation

(II.4.2)
x2

a2
+
y2

b2
+
z2

c2
= 1

defines the so called ellipsoid with semi–axes a, b, c. The center of the ellipsoid is the
point [0, 0, 0]. (See Fig. 4.)

If any two of the semi–axes are equal, the ellipsoid is circular (= the ellipsoid of
revolution). (See Fig. 5.) If all three semi–axes are equal, the ellipsoid coincides with a
sphere.

II.4.6. One sheet – hyperboloid. Let a, b, c be positive numbers. The equation

(II.4.3)
x2

a2
+
y2

b2
− z2

c2
= 1

is the equation for the so called one sheet – hyperboloid (= a hyperboloid of one sheet).
(See Fig. 6.)

If a = b then it is a circular one sheet – hyperboloid (= a one sheet – hyperboloid
of revolution) which arises e.g. by revolution of the hyperbola x2/a2 − z2/c2 = 1 in
the x, z –plane about the z –axis.
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II.4.7. Two sheet – hyperboloid. Let a, b, c be positive numbers. The equation

(II.4.4)
x2

a2
− y2

b2
− z2

c2
= 1

defines the so called two sheet – hyperboloid (= a hyperboloid of two sheets). (See Fig. 7.)

If b = c then the hyperboloid is circular and its axis of revolution is the x –axis. It
arises e.g. by revolution of the hyperbola x2/a2 − z2/c2 = 1 in the x, z –plane about
the z –axis.
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II.4.8. Paraboloid. Let a, b be positive numbers. The equation

(II.4.5) z =
x2

a2
+
y2

b2

is the equation for the so called elliptic paraboloid. Its axis is the z –axis. (See Fig. 8.)

If a = b then the paraboloid is circular (in other words: it is a paraboloid of
revolution). It arises e.g. by revolution of the parabola z = x2/a2 in the x, z –plane
about the z –axis.

The equation

(II.4.6) z =
x2

a2
− y2

b2

defines the so called hyperbolic paraboloid. (See Fig. 9.) This paraboloid intersects every
plane of the type z = c (where c > 0) in a hyperbola.
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II.4.9. Cylindrical surface, cylinder. Let a, b be positive numbers. The equation

(II.4.7)
x2

a2
+
y2

b2
= 1

defines the so called elliptic cylindrical surface (= an elliptic cylinder). (See Fig. 10.)

If a = b then it is a circular cylindrical surface (= a cylindrical surface of revolu-
tion). This arises e.g. by rotation of the parallel lines x = a, y = 0 and x = −a, y = 0
about the z –axis.

The equation

(II.4.8)
x2

a2
− y2

b2
= 1

defines the so called hyperbolic cylindrical surface (= a hyperbolic cylinder). (See Fig. 11.)
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The equation

(II.4.9) y = k x2

defines a parabolic cylindrical surface (= a parabolic cylinder). (See Fig. 12.)

II.4.10. Conic surface, cone. Let a, b, c be positive numbers. The equation

(II.4.8)
x2

a2
+
y2

b2
− z2

c2
= 0

describes the so called elliptic conic surface (= an elliptic cone).

If b = c then the cone is circular. This arises for example by rotation of the straight
lines x/a = z/c, y = 0 and x/a = z/c, y = 0 about the z –axis.

6z

XXX

y
XXXXXXXXXXz

q q q q q q q q

�
��

�
�
�
��+
x

Fig. 12

z

Fig. 13

6

�
�
�

�
�
�
�
�

�
�
�

�
�
�

�
�
��+
x

XXXXXXXXXXXXXXXXXXXz
yr r r r r r r r r r r r r r r@@@

@
@
@
@

@
@
@@

�
�
�
�
�
�
�
�
�
��

6

?

a b

c

You will again meet with quadric surfaces in the Mathematics II course, especially
in the chapter on surface integrals.

II.4.11. Problems. The given equations define various quadric surfaces. Recognize
their types, give them appropriate names and specify their axes, possibly also semi–axes.

a) x2 + y2/4 + 9z2 = 1 b) 25 (x− 1)2 + y2 + z2 = 25

c) x2/4 + y2/4− z2/9 = 1 d) x2 − (y − 2)2/4− (z − 4)2/4 = 1

e) z = x2 + 4y2 f) y = 1− 5x2 − 5(z − 2)2

g) y2 − x2 = z h) (x+ 2)2 − 5z2 = y

i) x2 + z2 = 4 j) x2/4 + (y + 4)2 = 1

k) 4x2 + 9z2 = 9y2 l) (y − 1)2 + z2 = x2

m) x2 − 4z2 = 1 n) (y + 2)2/4− x2/16 = 1

o) 4x2 − 9z2 = 9y2 p) y = x2 + 2

q) x2 + 4y2 = 1 r) (x− 4)2/4 + y2/16 + z2 = 1
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R e s u l t s :

a) Ellipsoid with center [0, 0] and semi–axes 1, 2, 1
3
.

b) Circular ellipsoid with center at the point [1, 0, 0] and semi–axes 1, 5, 5. Axis of
revolution is the x–axis.

c) Circular one–sheet hyperboloid with center at the origin. Axis of revolution is the
z–axis.

d) Circular two–sheet hyperboloid with center [0, 2, 4]. Axis of revolution is the straight
line y = 2, z = 4, parallel with the x–axis.

e) Elliptic paraboloid with center at the origin and axis z, open in the positive direc-
tion of the z–axis.

f) Circular paraboloid with vertex [0, 1, 2], open in the negative direction of the y–
axis. Axis of revolution is the straight line x = 0, z = 2, parallel with the y–axis.

g) Hyperbolic paraboloid with vertex at the origin and axis z.

h) Hyperbolic paraboloid with vertex [−2, 0, 0] and axis y.

i) Circular cylindrical surface. Axis of revolution is the y–axis and radius equals 2.

j) Elliptic cylindrical surface. Its axis is the straight line x = 0, y = 4, parallel with
the z–axis.

k) Elliptic conic surface with vertex at the origin and axis y.

l) Circular conic surface with vertex [0, 1, 0]. Axis of revolution is the straight line
y = 1, z = 0, parallel with the x–axis.

m) Hyperbolic cylindrical surface, parallel with the y–axis, symmetric according to
this axis.

n) Hyperbolic cylindrical surface, parallel with the z–axis, symmetric according to
the straight line x = 0, y = −2.

o) Circular conic surface with vertex at the origin. Axis of revolution is the x–axis.

p) Parabolic cylindrical surface, parallel with the z–axis. It meets the x, y–plane
in the parabola with vertex [0, 2] and axis y. (Its equation in the x, , y–plane is
identical with the equation of the whole cylindrical surface: y = x2 + 2.)

q) Elliptic cylindrical surface. Its axis is the z–axis.

r) Ellipsoid with center at the point [4, 0, 0] and semi–axes 2, 4, 1.
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